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ABSTRACT

We report on a framework for recovering single- or multi-timestep
sparse signals that can learn and exploit a variety of probabilistic
forms of structure. Message passing-based inference and empirical
Bayesian parameter learning form the backbone of the recovery pro-
cedure. We further describe an object-oriented software paradigm
for implementing our framework, which consists of assembling
modular software components that collectively define a desired sta-
tistical signal model. Lastly, numerical results for synthetic and
real-world structured sparse signal recovery are provided.

Index Terms— compressed sensing, structured sparse signal re-
covery, multiple measurement vectors, structured sparsity, dynamic
compressed sensing

1. INTRODUCTION

In recent years, a great deal of effort by the compressed sensing
(CS) community has been directed at developing ways to incorpo-
rate additional signal structure beyond simple sparsity into recovery
techniques [1]. Recent work into Bayesian approaches aimed at ex-
ploiting the low-dimensional structure inherent in many real-world
signals has demonstrated that significant performance gains can be
achieved, even when the structure must be learned (e.g., [2–6]).

In this work we present a flexible framework for performing em-
pirical Bayesian estimation of structured sparse signals. Our ap-
proach follows the “turbo CS” [7] principle of breaking apart an
intractable global inference problem into smaller sub-problems for
which efficient and accurate inference is possible. By exchanging
information between the sub-problems, we obtain a high-quality ap-
proximation of the solution to the global problem. Additionally, as a
byproduct of solving these sub-problems, we are often able to learn
model parameters iteratively from the data using an expectation-
maximization (EM) algorithm.

2. A STRUCTURED CS SIGNAL MODEL

We consider the task of recovering a collection of sparse vectors
{x(t)}Tt=1 from a collection of measurement vectors {y(t)}Tt=1,
where x(t) ∈ C

N , y(t) ∈ C
M , and (typically) M < N . The

relationship between x(t) and y(t) is determined as follows: Each
x(t) is transformed through the linear process

z(t) = A(t)x(t), t = 1, . . . , T (1)

where A(t) ∈ C
M×N is a known linear operator. Each “transform

coefficient” z(t)m

(

i.e., the mth element of z(t)
)

is then observed
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through an independent scalar “observation channel,” defined by the
conditional distribution p(y(t)

m |z(t)m ), to yield a measurement y(t)
m .

Observe that the standard noisy CS model y(t) = A(t)x(t)+w(t) is
a special case of the aforementioned signal model when p(w(t)) =
∏M

m=1 pW (w(t)
m ) and pW (y(t)

m − z(t)m ) = p(y(t)
m |z(t)m ), as is the ma-

trix CS model Y = AX + W . We assume w.l.o.g. that x(t) is
sparse in the canonical basis.

As mentioned in Section 1, {x(t)}Tt=1 oftentimes exhibits sub-
stantial structure beyond simple sparsity. We will refer to the struc-
ture present within a single vector x(t) as spatial structure, and struc-
ture across multiple such vectors as temporal structure. Also, we
will use the overbar notation x̄ ! vec([x(1), . . . ,x(T )]) to denote
the vectorization of all signal timesteps (with other overbar vari-
ables defined analogously). In order to model the spatial and tem-
poral structure probabilistically, we introduce a setH of hidden ran-
dom variables such that p(x̄|H) becomes separable, i.e., p(x̄|H) =
∏T

t=1

∏N
n=1 p(x

(t)
n |H).

The utility of using a separable signal prior is twofold: it of-
tentimes simplifies the task of describing the structure probabilisti-
cally, and allows us to apply a powerful inference algorithm known
as GAMP [8] within a turbo inference framework. For ease of ex-
planation, we will henceforth focus on one particular choice of hid-
den variables, namely, where each signal coefficient x(t)

n can be ex-
pressed as the product of two hidden variables: x(t)

n = s(t)n · γ(t)
n ,

where s(t)n ∈ {0, 1} is an indicator of support set membership, and
γ(t)
n ∈ C expresses the amplitude of a non-zero x(t)

n . This decompo-
sition results in the following collection of hidden random variables:

H ! {s(t),γ(t)}Tt=1. (2)

We stress that this is simply one of many choices ofH and p(x̄|H);
many others could be considered within the framework we propose.
(See Section 5 for another example.)

Given the hidden variables in (2), we can model a wide vari-
ety of signal structures by choosing appropriate priors for s̄ and γ̄.
Specifically, p(s̄) can model spatio-temporal structure in the support
of x̄, such as block-, tree-, or clustered-sparsity, while p(γ̄) can be
used to model spatio-temporal correlations in the amplitudes of x̄.

3. TURBO INFERENCE AND PARAMETER LEARNING
For the signal model of Section 2, the joint posterior distribution
of all of the random variables, given the measurements, can be ex-
pressed using Bayes’ rule as:

p(x̄,H|ȳ;P) ∝ p(ȳ|x̄;P)p(x̄|H;P)p(H;P), (3)

where ∝ indicates equality up to a normalizing constant and P de-
notes a set of model parameters that are used to parameterize the
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Fig. 1: A factor graph representation of the joint posterior distribution of
(3). In this example,M = T = 3,N = 4, andH = {s(t),γ(t)}Tt=1.

signal model, e.g., prior means, variances, etc., which we treat as de-
terministic unknowns. The objective of our inference procedure will
be to obtain marginal posterior distributions of each random vari-
able, e.g., p(x(t)

n |ȳ;P), which can be used to produce an MMSE
estimate of the signal. At the same time, we would like to learn the
model parameters P from the data in a principled fashion.

By taking advantage of the fact that p(ȳ|x̄;P)
(

≡ p(ȳ|z̄;P)
)

is separable due to the independent observation assumption, and
that p(x̄|H;P) is separable by definition of H, we can conve-
niently describe (3) using a graphical model known as a factor
graph. The sample factor graph shown in Fig. 1 expresses the
probabilistic structure of the model (2), where p(H) = p(s̄)p(γ̄)

and p(x(t)
n |H) = p(x(t)

n |s(t)n , γ(t)
n ), using circles to denote random

variables (here {xn}, {sn}, and {γn}) and squares to denote poste-
rior factors. Although the subsequent discussion will focus on this
example factor graph, our technique generalizes to any factor graph
that describes separable signal and observation-channel priors.

A popular means of performing inference on probabilistic fac-
tor graphs is via belief propagation (BP) [9], whose objective is
to compute the posterior marginals of all unobserved random vari-
ables. While implementing a conventional BP algorithm would be
computationally intractable for the factor graph of Fig. 1, there ex-
ists an attractive approximate message passing algorithm known as
GAMP [8]. GAMP’s appeal for our problem stems from several
considerations: (i) GAMP supports arbitrary separable signal and
observation-channel priors, (ii) inference is rapid and highly accu-
rate, and (iii) theoretical analyses demonstrate that the behavior of
GAMP can be accurately predicted by a set of state evolution equa-
tions [8].

To perform inference on the complete factor graph of Fig. 1, we
employ the “turbo CS” framework of [7], which alternates1 between
exploiting the measurement structure (using GAMP) and exploiting
the signal structure specified by p(H;P). This approach is remi-
niscent of modern turbo communications receivers, which alternate
between channel equalization and decoding. The messages leaving
the GAMP planes in Fig. 1 constitute beliefs about the hidden vari-
ables H, given the measurements ȳ. These messages act as inputs
to the {s(t)n } and {γ(t)

n } nodes in the rightmost portion of the factor

1Another way to exploit GAMP for message passing on the complete
factor graph of Fig. 1 is through “hybrid-GAMP” [10]. Unlike the “turbo”
message-passing schedule adopted in this work, hybrid-GAMP employs a
flooding schedule.

graph. There, inference can be performed using any technique (e.
g., the forward-backward algorithm [9]) that provides extrinsic like-
lihoods of the hidden variables. These likelihoods act as updated be-
liefs about the hidden variables, given the underlying structure, and
are fed back to GAMP, after which the entire process is repeated.

At the same time that turbo inference is being performed, the es-
timates of the unknown model parameters P can be updated through
an expectation-maximization (EM) [11] learning procedure. Often-
times it makes sense to use the hidden variables H as the “missing
data,” in which case the EM update for P , at iteration k + 1, can be
expressed as the optimization problem

Pk+1 = argmax
P

E
H|ȳ

[

log p(ȳ,H;P)|ȳ;Pk
]

,

where Pk is the estimated value of all model parameters as of itera-
tion k. For many signal models, log p(ȳ,H;P) will decouple into a
sum of many terms that depend only on small subsets of hidden vari-
ables and parameters. Therefore, it is often possible to obtain closed-
form EM updates of the model parameters using only marginal or
pairwise joint posteriors, e.g., p(s(t)n |ȳ) and p(γ(t)

n , γ(t−1)
n |ȳ) in [12].

Since belief propagation provides these posteriors, it is feasible to
perform these EM updates as an auxiliary procedure to the main
turbo inference process with very little additional cost.

4. OBJECT-ORIENTED SOFTWARE IMPLEMENTATION

One of the defining features of the framework we propose in Sec-
tions 2 and 3 is that it decouples the global inference problem of
marginalizing (3) into smaller sub-problems that require only lo-
cal, not global, information to complete their tasks. Furthermore,
these sub-problems roughly correspond to inference on different re-
gions of the factor graph. Consequently, the object-oriented pro-
gramming (OOP) paradigm is useful for building a powerful and
flexible software implementation of our approach, which we call
EMturboGAMP.

We will now describe a software implementation2 of EMtur-
boGAMP that uses OOP principles to allow one to solve a variety
of structured CS problems. At its core, our implementation relies
on assembling objects of different classes in a modular fashion to
specify a particular signal model. To date, we have defined four ab-
stract classes: Signal, Observation, SupportStruct, and
AmplitudeStruct, and a container class called TurboOpt that
holds objects derived from these four classes.

At the highest level, EMturboGAMP consists of two steps
performed repeatedly: in the first step, GAMP is run for a par-
ticular choice of “local” signal and observation-channel priors3.
In the second step, the final state of GAMP messages is given to
the TurboOpt object, which works together with the Signal
and Observation objects to provide updated local signal and
observation-channel priors to GAMP for the next turbo iteration.

Concrete implementations of these four abstract classes are
responsible for overseeing specific tasks. A Signal class ob-
ject defines the marginal prior distribution p(x(t)

n ;P) and hid-
den variables H. It delegates the task of exploiting the signal
support structure to a SupportStruct object, which defines
p(s̄;P), and the task of exploiting the signal amplitude structure
to an AmplitudeStruct object, which defines p(γ̄;P). The

2Available at www.ece.osu.edu/˜schniter/EMturboGAMP
3The GAMP algorithm is conventionally run with a fixed choice of signal

and observation-channel priors. In the turbo framework, these priors (from
GAMP’s perspective) are updated every iteration, thus we refer to them as
“local priors”.
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Fig. 2: Information flow between EMturboGAMP classes and GAMP.

Observation class object specifies the observation-channel prior
p(y(t)

m |z(t)m ;P). Each class is also responsible for performing EM
updates of any model parameters ∈ P which they define. In Fig. 2
we summarize the relationship between the various classes and
GAMP, illustrating how information flows between them.

One nice property of the OOP approach is that it makes it easy
to incorporate new signal or observation-channel models without re-
quiring one to code up an entirely new algorithm from scratch. A
new marginal signal prior, for example, can be specified by creat-
ing a new sub-class of the Signal class. Each new sub-class must
implement the handful of methods (functions) specified by its ab-
stract super-class, but the manner in which they are implemented is
entirely up to the programmer. This allows EMturboGAMP to be
assured of a common interface without mandating the way in which
the inference is performed. For further details, we invite the reader
to explore the MATLAB code we have made publicly available2 (and
to contribute additional classes as well!).

5. NUMERICAL EXAMPLES
To demonstrate both the flexibility of our proposed framework, as
well as the convenience of its OOP-based software implementation,
we undertook a numerical study of EMturboGAMP on synthetic
structured sparse signals, as well as a real-world compressively
sensed audio example.

First, to understand the average performance of EMturboGAMP
under a variety of test conditions, we empirically evaluated mean-
squared error (MSE) performance on the sparsity-undersampling
plane, calculating MSE at various combinations of the normal-
ized sparsity ratio, β (i.e., the ratio of non-zero coefficients-
to-measurements, K/M ), and undersampling ratio, δ (i.e., the
ratio of measurements-to-unknowns, M/N ). In particular, for
each (δ, β) pair, multiple independent signal realizations were
recovered, and for each realization the time-averaged normal-
ized MSE (TNMSE) was computed, where TNMSE(x̄, ˆ̄x) !
1
T

∑T
t=1 ‖x

(t) − x̂(t)‖22/‖x
(t)‖22, and x̂(t) is an estimate of x(t).

As synthetic data, we considered a multiple measurement vec-
tor (MMV) problem in which each coefficient was marginally a
Bernoulli-Gaussian-mixture of the form

p(x(t)
n ) = (1− λ)δ(x(t)

n ) +
2

∑

i=1

λ
2N (x(t)

n ;µi, 1
4 ), (4)

with µ1 = 1 and µ2 = −1. We wished to impose smooth variations
in the amplitudes over time, in addition to the time-invariant support
constraint inherent in the classical MMVmodel. To accomplish this,
we defined our hidden variables asH ! {s(t),γ(t)

1 ,γ(t)
2 }Tt=1, where

γ(t)
1,n was marginally distributed N (+1, 1

4 ), γ
(t)
2,n was marginally

N (−1, 1
4 ), and s(t)n ∈ {0, 1, 2} specified whether x(t)

n was non-
zero, and if so, which component Gaussian it was drawn from.
Independent Gauss-Markov processes with correlation ρ, (i.e.,
γ(t)
d,n = ργ(t−1)

d,n + (1 − ρ)e(t)d,n, d = 1, 2, where e(t)d,n is a Gaussian
perturbation process), were used to model amplitude correlations for
both γ̄1 and γ̄2, while p(s̄) was chosen to enforce joint sparsity. As

an observation-channel model, we considered additive noise with a
heavy-tailed distribution. Specifically, the observation-channel prior
was p(y(t)

m |z(t)m ) = (1− π)N (z(t)m ; 0, ν0) + πN (z(t)m ; 0, ν1), where
ν1 = 1000 · ν0, and π = 0.10.

Iso-dB contours of median TNMSE performance for a signal
model in which N = 1024, T = 6, ρ = 0.95, and SNR = 25dB
are plotted in Fig. 3 for four different recovery methods. In Fig. 3a,
we show the performance of a support-aware genie smoother that
had perfect knowledge of the support, and perfect knowledge of
the signal model and its parameters, P . In Fig. 3b, we show the
performance of TurboGAMP with perfect signal model knowledge
(i.e., no need for EM learning) but no support knowledge. Then,
in Fig. 3c, we plot the performance of EMturboGAMP with EM
learning of the model parameters. Finally, Fig. 3d shows the perfor-
mance of a structure-agnostic GAMP recovery method, which had
knowledge of p(x(t)

n ;P) and p(y(t)m |z(t)m ;P), but no knowledge of
p(γ̄1), p(γ̄2), or p(s̄). The structure-agnostic GAMP method was
allowed to refine model parameters using EM learning to compen-
sate for model mismatch. Despite this, the advantages of exploiting
the additional signal structure are clearly evident.

We next used EMturboGAMP to recover an audio signal from
sub-Nyquist samples. The audio clip is a 7 second recording of a
trumpet solo, which presents a challenge for CS methods since the
signal will not be perfectly sparse. The clip, sampled at a rate of 11
kHz, was divided into T = 54 non-overlapping segments of length
N = 1500. Using the discrete cosine transform (DCT) as a sparsify-
ing basis, linear measurements were obtained using a time-invariant
i.i.d. Gaussian sensing matrix.

In Fig. 4 we plot the magnitude of the DCT coefficients of the
audio signal on a dB scale. Beyond the temporal correlation evident
in the plot, it is also interesting to observe that there is a non-trivial
amount of frequency correlation (correlation across the index [n]), as
well as a large dynamic range. We performed recoveries using five
signal models, each constructed by combining various objects of the
four classes described in Section 4: BG-GAMP (a structureless sig-
nal model with Bernoulli-Gaussian signal marginals), GM-GAMP
(a structureless signal model with Bernoulli-Gaussian-mixture sig-
nal marginals with D = 4 Gaussian mixture components), DCS-
BG-GAMP (a structured Bernoulli-Gaussian dynamic CS model de-
scribed in [2]), MRF-BG-GAMP (Bernoulli-Gaussian GAMP with
a spatio-temporal Markov random field structure on the signal sup-
port [13]), and DCS-GM-GAMP (a Bernoulli-Gaussian-mixture dy-
namic CS model with D = 4 mixture components). For each al-
gorithm, unique model parameters were learned using EM at each
timestep.

In Table 1 we present the results of applying each algorithm to
the audio dataset for three different undersampling rates, δ. Overall,
we see that performance improves at each undersampling rate as the
signal model becomes more expressive. While GM-GAMP outper-
forms BG-GAMP at all undersampling rates, it is surpassed by DCS-
BG-GAMP, MRF-BG-GAMP, and DCS-GM-GAMP, which offers
the best TNMSE performance. Indeed, we observe that one can ob-
tain comparable, or even better, performance with an undersampling
rate of δ = 1

5 using any of the three structured sparsity techniques,
with that obtained using BG-AMP with an undersampling rate of
δ = 1

3 .
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Fig. 3: Median TNMSE performance (in dB) across the sparsity-undersampling plane for four different recovery methods

Undersampling Rate
δ = 1

2 δ = 1
3 δ = 1

5

A
lg
or
ith
m BG-GAMP -16.88 (dB) | 9.11 (s) -11.67 (dB) | 8.27 (s) -8.56 (dB) | 6.63 (s)

GM-GAMP (D = 4) -17.49 (dB) | 19.36 (s) -13.74 (dB) | 17.48 (s) -10.23 (dB) | 15.98 (s)
DCS-BG-GAMP -19.84 (dB) | 10.20 (s) -14.33 (dB) | 8.39 (s) -11.40 (dB) | 6.71 (s)
MRF-BG-GAMP -21.15 (dB) | 14.92 (s) -16.25 (dB) | 13.22 (s) -12.35 (dB) | 11.88 (s)

DCS-GM-GAMP (D = 4) -21.33 (dB) | 20.34 (s) -16.78 (dB) | 18.63 (s) -12.49 (dB) | 10.13 (s)

Table 1: Performance on audio CS dataset (TNMSE (dB) | Runtime (s)) of two unstructured sparsity algorithms, BG-GAMP and GM-GAMP, and three
structured sparsity algorithms, DCS-BG-GAMP, MRF-BG-GAMP, and DCS-GM-GAMP.
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