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Abstract—In this work, a Bayesian approximate message pass-
ing algorithm is proposed for solving the multiple measurement
vector (MMV) problem in compressive sensing, in which a
collection of sparse signal vectors that share a common support
are recovered from undersampled noisy measurements. The algo-
rithm, AMP-MMV, is capable of exploiting temporal correlat ions
in the amplitudes of non-zero coefficients, and provides soft
estimates of the signal vectors as well as the underlying support.
Central to the proposed approach is an extension of recently
developed approximate message passing (AMP) techniques tothe
amplitude-correlated MMV setting. Aided by these techniques,
AMP-MMV offers a computational complexity that is linear in all
problem dimensions. In order to allow for automatic parameter
tuning, an expectation-maximization algorithm that complements
AMP-MMV is described. Finally, a numerical study demonstrates
the power of the proposed approach and its particular suitability
for application to high-dimensional problems.

I. I NTRODUCTION

In this work we consider themultiple measurement vector
(MMV) problem [1], in which, givenT length-M measure-
ment vectors,{y(t)}Tt=1, the objective is to recover a collection
of length-N sparse vectors{x(t)}Tt=1, whenM < N . Each
measurement vector is obtained as

y(t) = Ax(t) + e(t), t = 1, . . . , T, (1)

whereA is a known measurement matrix ande(t) is corrupting
additive noise. The unique feature of the MMV problem is the
assumption of a common support for each signal vectorx(t).

Algorithms developed for the MMV problem are oftentimes
intuitive extensions of single measurement vector (SMV)
algorithms, and therefore share a similar taxonomy. Among
the different techniques that have been proposed are mixed-
norm minimization methods [2]–[5], greedy pursuit methods
[2], [6], [7], and Bayesian methods [8]–[11]. Also of note are
techniques that transform the MMV problem into a block-
sparse SMV problem [11], [12]. Existing literature suggests
that greedy pursuit techniques are outperformed by mixed-
norm minimization approaches, which in turn are surpassed
by Bayesian methods [2], [8], [11].

In this paper we provide a high-level overview of a recently
proposed [13] algorithm, AMP-MMV, that leverages a novel
approximate message passing (AMP) [14] framework to per-
form inference on a probabilistic signal model enforcing joint
sparsity of the signal vectors. Ours joins a handful of MMV
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algorithms that also account for temporal correlations in the
amplitudes of the non-zero coefficients (cf. [5], [11]), which
we model as Gauss-Markov random processes. Incorporating
this temporal correlation structure is crucial, not only because
many real-world signals possess such structure, but because
the performance of MMV algorithms is particularly sensitive
to this structure [8], [11].

Since our probabilistic signal model relies on a set of hyper-
parameters that may not be known in practice, we describe a
principled method of learning all of the hyperparameters from
the data using an expectation-maximization (EM) algorithm
[15]. Importantly, our EM algorithm makes use of information
that has already been obtained in the process of executing
AMP-MMV, making the EM procedure highly efficient.

Finally, we present results of a numerical study of AMP-
MMV that includes a comparison against an oracle-aided
support-aware Kalman smoother (SKS), as well as three state-
of-the-art MMV algorithms. This study demonstrates that
AMP-MMV performs well under a variety of challenging
settings, and that it is especially suitable for application to
high-dimensional problems.

II. SIGNAL MODEL

As noted in SectionI, we consider the linear measurement
model (1), in which the signalx(t) ∈ C

N at timestept is ob-
served asy(t) ∈ CM through the linear operatorA ∈ CM×N .
We assumee(t) ∼ CN (0, σ2

eIM ) is circularly symmetric
complex white Gaussian noise. We useS , {n|x

(t)
n 6= 0} to

denote the indices of the time-invariant support of the signal,
which is assumed to be suitably sparse, i.e.,|S| ≤M .

We decompose each coefficientx(t)n as the product of two
hidden variables:

x(t)n = sn · θ(t)n , (2)

wheresn ∈ {0, 1} is a binary variable that indicates support
set membership, andθ(t)n ∈ C is a variable that provides the
amplitude of coefficientx(t)n . When sn = 0, x(t)n = 0 and
n /∈ S, and whensn = 1, x(t)n = θ

(t)
n andn ∈ S. To model

the sparsity of the signal, we treat eachsn as a Bernoulli
random variable with Pr{sn = 1} = λn < 1.

In order to model the temporal correlation of signal ampli-
tudes, we treat the evolution of amplitudes over time as station-
ary first-order Gauss-Markov random processes. Specifically,
we assume thatθ(t)n evolves according to the following linear
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Fig. 1: Factor graph representation ofp(x̄, θ̄, s|ȳ) in (5).

dynamical system model:

θ(t)n = (1− α)(θ(t−1)
n − ζ) + αw(t)

n + ζ, (3)

whereζ ∈ C is the mean of the amplitude process,w
(t)
n ∼

CN (0, ρ) is a circularly symmetric white Gaussian pertur-
bation process, andα ∈ [0, 1] is a scalar that controls the
correlation ofθ(t)n across time. At one extreme,α = 0, the
random process is perfectly correlated(θ

(t)
n = θ

(t−1)
n ), while at

the other extreme,α = 1, the amplitudes evolve independently
over time.

Under our model, the prior distribution of any signal coef-
ficient, x(t)n , is a Bernoulli-Gaussian distribution:

p(x(t)n ) = (1− λn)δ
(

x(t)n
)

+ λnCN
(

x(t)n ; ζ, σ2
)

, (4)

whereδ(·) is the Dirac delta function andσ2 ,
αρ
2−α is the

steady-state variance ofθ(t)n .

III. T HE AMP-MMV A LGORITHM

The statistical structure of the signal model from SectionII ,
which we will exploit, becomes apparent from a factorization
of the posterior joint pdf of all random variables. If we define ȳ
to be the collection of all measurement vectors,{y(t)}Tt=1, and
definex̄ and θ̄ similarly, then the posterior joint distribution
factors as follows:

p(x̄, θ̄, s|ȳ) ∝
T
∏

t=1

(

M
∏

m=1

p(y(t)m |x(t))

N
∏

n=1

p(x(t)n |θ(t)n , sn)

× p(θ(t)n |θ(t−1)
n )

)

N
∏

n=1

p(sn), (5)

where∝ indicates equality up to a normalizing constant, and
p(θ

(1)
n |θ

(0)
n ) , p(θ

(1)
n ). A convenient graphical representation

of this decomposition is given by afactor graph, which is
an undirected bipartite graph that connects the pdf “factors”
of (5) with the variables that make up their arguments. The
factor graph for the decomposition of (5) is shown in Fig.1.
For visual clarity, the{θ(t)n }Tt=1 and sn variable nodes have
been removed from the graph for the intermediate indexn,
but should in fact be present at every indexn = 1, . . . , N .
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TABLE I: The factors, underlying distributions, and functional forms associ-
ated with the signal model of SectionII .

The factor nodes in Fig.1 have all been assigned alphabetic
labels for clarity. The correspondence between these factor
labels, the underlying distributions, and the functional form of
the distributions is presented in TableI.

Our approach to performing inference on the factor graph
of Fig. 1 is based on belief propagation [16], which, in cycle-
free graphs, is an instance of the sum-product algorithm.
When the factor graph contains cycles, the same rules that
define the sum-product algorithm can still be applied, however
convergence to the correct posterior marginal distributions is
no longer guaranteed. Despite this, loopy belief propagation
has been successfully applied to many problems, including
Markov random field inference, LDPC decoding, and compres-
sive sensing [13]. In what follows, we useνa→b(·) to denote
a message that is passed from nodea to a connected nodeb.

A. Message Scheduling

Since the factor graph of Fig.1 contains many cycles, there
are a number of valid ways to schedule, or sequence, the
messages that are exchanged in the graph. In this work, we
make use of an intuitive decomposition of message scheduling
into four distinct phases, which could be ordered in a number
of different ways to enable, amongst others, causal filtering
and non-causal smoothing [13]. We label each phase using
the mnemonics(into), (within) , (out), and(across).

To aid our discussion, Fig.2 summarizes each of the
four phases. Arrows indicate the direction that messages are
moving, and only those nodes and edges participating in a par-
ticular phase are shown in that phase. For the(across)phase
we show messages being passed forward in time, and omit the
backwards pass. The figure also introduces the notation thatwe
adopt for the different variables that serve to parameterize the
messages. Certain variables, e.g.,⇀

η(t)n and↼
η(t)n , are accented

with directional arrows to differentiate messages moving in
opposite directions along the same edge.

In phase (into), messages are passed from thesn and
θ
(t)
n variable nodesinto frame t. Loosely speaking, these

messages convey current beliefs about the values ofs and
θ(t). In phase(within) , messages are exchangedwithin frame
t, producing an estimate ofx(t) using the current beliefs
about s and θ(t) together with the available measurements
y(t). In phase(out), the estimate ofx(t) is used to refine the
beliefs abouts andθ(t) by passing messagesout of frame t.
Finally, in phase(across), messages are sent fromθ(t)n to either
θ
(t+1)
n or θ(t−1)

n , thus conveying informationacross time about
temporal correlation in the signal amplitudes. Upon choosing
an ordering of these phases, messages are exchanged until



either convergence occurs, or a maximum number of allowable
iterations is reached.

B. Implementing the Message Passes

Most of the messages can be derived by applying the
rules of the sum-product algorithm. In this sub-section, we
focus on a handful of messages in the(within) phase whose
implementation requires a departure from these rules.

Inspection of Fig.2(b) reveals a dense interconnection
between the{x(t)n } and{g(t)m } nodes. Applying standard sum-
product rules would result in an algorithm that required the
evaluation of multi-dimensional integrals that grew exponen-
tially in number in bothN andM , which is clearly computa-
tionally infeasible for meaningful problem sizes. Instead, we
turn to a recently developed framework known asapproximate
message passing (AMP).

A complete description of AMP is beyond the scope of this
work, and we refer the interested reader to [14], [17]. For the
purposes of this discussion, we simply note that AMP is an
efficient means of performing inference on the factor graph
in Fig. 2(b), given generic signal priors, and is specified by
steps (A4) - (A8) in TableII . A recent theoretical analysis of
AMP [18] shows that in the large-system limit (i.e.,M , N →
∞ with M /N fixed), the behavior of AMP is governed by a
state evolution whose fixed points, when unique, correspond
to minimum mean square error (MMSE) signal estimates.

From AMP’s viewpoint,ν
f
(t)
n →x

(t)
n
(·) is the “prior distribu-

tion” for x(t)n , which takes the Bernoulli-Gaussian form

ν
f
(t)
n →x

(t)
n
(x(t)n ) = (1−

↼
π(t)
n )δ(x(t)n )+

↼
π(t)
n CN (x(t)n ;

↼

ξ(t)n ,
↼

ψ(t)
n ).
(6)

This “prior” determines the AMP soft-thresholding functions
defined in (D1) - (D4) of Table II . The derivation of these
thresholding functions closely follows those outlined in [19],
which considered the special case of a zero-mean Bernoulli-
Gaussian prior.
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Fig. 2: A summary of the four message passing phases, including message
notation and form.

% Define soft-thresholding functions:

Fnt(φ; c) , (1 + γnt(φ; c))
−1

(↼
ψ
(t)
n φ+

↼
ξ
(t)
n c

↼
ψ
(t)
n +c

)

(D1)

Gnt(φ; c) , (1 + γnt(φ; c))
−1

( ↼
ψ
(t)
n c

↼
ψ
(t)
n +c

)

+ γnt(φ; c)|Fn(φ; c)|
2 (D2)

F′
nt(φ; c) , ∂

∂φ
Fnt(φ, c) = 1

c
Gnt(φ; c) (D3)

γnt(φ; c) ,
(

1−
↼
π
(t)
n

↼
π
(t)
n

)(↼
ψ
(t)
n +c
c

)

× exp
(

−
[↼
ψ
(t)
n |φ|2+

↼
ξ
(t) ∗
n cφ+

↼
ξ
(t)
n cφ∗−c|

↼
ξ
(t)
n |2

c(
↼
ψ
(t)
n +c)

])

(D4)

% Begin passing messages . . .
for t = 1, . . . , T, ∀n :

% Execute the (into) phase . . .

↼
π
(t)
n =

λn·
∏

t′ 6=t
⇀
π
(t′)
n

(1−λn)·
∏

t′ 6=t
(1−

⇀
π
(t′)
n )+λn·

∏

t′ 6=t
⇀
π
(t′)
n

(A1)

↼
ψ(t)
n =

⇀
κ
(t)
n ·

↼
κ
(t)
n

⇀
κ
(t)
n +

↼
κ
(t)
n

(A2)

↼
ξ(t)n =

↼
ψ(t)
n ·

(⇀
η
(t)
n

⇀
κ
(t)
n

+
↼
η
(t)
n

↼
κ
(t)
n

)

(A3)

% Initialize AMP-related variables . . .
∀m : z1mt = y(t)m , ∀n : µ1

nt = 0, and c1t = 100 ·
∑N
n=1 ψ

(t)
n

% Execute the (within) phase using AMP . . .
for i = 1, . . . , I, ∀n,m :

φint =
∑M
m=1A

∗
mnz

i
mt + µint (A4)

µi+1
nt = Fnt(φ

i
nt; c

i
t) (A5)

v
i+1
nt = Gnt(φ

i
nt; c

i
t) (A6)

c
i+1
t = σ2

e + 1
M

∑N
n=1 v

i+1
nt (A7)

z
i+1
mt = y(t)m − aTmµ

i+1
t +

zimt
M

∑N
n=1 F′

nt(φ
i
nt; c

i
t) (A8)

end
x̂(t)
n = µ

I+1
nt % Store current estimate of x(t)

n (A9)
% Execute the (out) phase . . .
⇀
π(t)
n =

(

1 +
( ↼

π
(t)
n

1−
↼
π
(t)
n

)

γnt(φ
I
nt; c

I+1
t )

)−1
(A10)

(
⇀
ξ
(t)

n ,
⇀
ψ

(t)

n ) = taylor approx(↼π(t)
n , φInt, c

I
t ) (A11)

% Execute the (across)phase from θ(t)n to θ(t+1)
n . . .

⇀
η(t+1)
n = (1 − α)

( ⇀
κ
(t)
n
⇀
ψ
(t)
n

⇀
κ
(t)
n +

⇀
ψ
(t)
n

)(⇀
η
(t)
n

⇀
κ
(t)
n

+
⇀
ξ
(t)
n
⇀
ψ
(t)
n

)

+ αζ (A12)

⇀
κ(t+1)
n = (1 − α)2

( ⇀
κ
(t)
n
⇀
ψ
(t)
n

⇀
κ
(t)
n +

⇀
ψ
(t)
n

)

+ α2ρ (A13)

end

TABLE II: Message update equations for a “serial” configuration of the four
message passing phases.

For convenience, we summarize the message update equa-
tions in TableII , where we provide a pseudocode implementa-
tion of AMP-MMV. Inspection of the pseudocode reveals that
the overall per-iteration complexity is linear in all problem
dimensions, that is,O(TNM) flops, reflecting the substantial
complexity reduction that comes from AMP.

IV. ESTIMATING THE MODEL PARAMETERS

In order to learn the model prior parameters{λn}Nn=1,
ζ, α, ρ, and σ2

e , we develop an expectation-maximization
(EM) algorithm [15] that couples with the message passing
procedure described in SectionIII-A to provide a means of
learning all of the model parameters while simultaneously
estimating the signal̄x and its supports.

The EM algorithm is an appealing choice for performing
parameter estimation for several reasons. First and foremost,
the EM algorithm is a well-studied and principled means of
parameter estimation, offering provable convergence to a local
maximum of the likelihood function [15]. Second, it is an
iterative algorithm, and thus pairs naturally with concurrent
iterations of AMP-MMV. Finally, the expectation step of the
EM algorithm relies on quantities that have already been



% Define key quantities obtained from AMP-MMV at iteration k:

E[sn|ȳ] =
λn

∏T
t=1

⇀
π
(t)
n

λn
∏T
t=1

⇀
π
(t)
n +(1−λn)

∏T
t=1

(1−
⇀
π
(t)
n )

(Q1)

ṽ(t)n , var{θ(t)n |ȳ} =

(

1
⇀
κ
(t)
n

+ 1
⇀
ψ
(t)
n

+ 1
↼
κ
(t)
n

)−1

(Q2)

µ̃(t)
n , E[θ(t)n |ȳ] = ṽ(t)n ·

(

⇀
η
(t)
n

⇀
κ
(t)
n

+
⇀
ξ
(t)
n
⇀
ψ
(t)
n

+
↼
η
(t)
n

↼
κ
(t)
n

)

(Q3)

v(t)n , var
{

x(t)
n

∣

∣ȳ
}

% See (A6) of Table II
µ(t)
n , E

[

x(t)
n

∣

∣ȳ
]

% See (A5) of Table II

% EM update equations:
λk+1 = 1

N

∑N
n=1 E[sn|ȳ] (E1)

ζk+1 =
(

N(T−1)

ρk
+ N

(σ2)k

)−1 (

1

(σ2)k

∑N
n=1 µ̃

(1)
n

+
∑T
t=2

∑N
n=1

1

αkρk

(

µ̃(t)
n − (1 − αk)µ̃(t−1)

n

)

)

(E2)

αk+1 = 1
4N(T−1)

(

b −
√

b2 + 8N(T − 1)c
)

(E3)

where:
b , 2

ρk

∑T
t=2

∑N
n=1 Re

{

E[θ(t)n
∗
θ(t−1)
n |ȳ]

}

−Re{(µ̃(t)
n − µ̃(t−1)

n )∗ζk} − ṽ(t−1)
n − |µ̃(t−1)

n |2

c , 2

ρk

∑T
t=2

∑N
n=1 ṽ

(t)
n + |µ̃(t)

n |2 + ṽ(t−1)
n + |µ̃(t−1)

n |2

−2Re
{

E[θ(t)n
∗
θ(t−1)
n |ȳ]

}

ρk+1 = 1

(αk)2N(T−1)

∑T
t=2

∑N
n=1 ṽ

(t)
n + |µ̃(t)

n |2

+(αk)2|ζk|2 − 2(1 − αk)Re
{

E[θ(t)n
∗
θ(t−1)
n |ȳ]

}

−2αkRe
{

µ̃(t)∗
n ζk

}

+ 2αk(1 − αk)Re
{

µ̃(t−1)∗
n ζk

}

+(1 − αk)(ṽ(t−1)
n + |µ̃(t−1)

n |2) (E4)

σ2 k+1
e = 1

TM

(

∑T
t=1 ‖y(t) − Aµ(t)‖2 + 1

T

N
v(t)

)

(E5)

TABLE III: EM algorithm update equations for the signal model parameters
of SectionII .

computed in the process of executing AMP-MMV, and so the
EM procedure is highly efficient.

We let Γ , {λ, ζ, α, ρ, σ2
e} denote the set of all model

parameters, and letΓk denote the set of parameter estimates
at the kth EM iteration. Here we have assumed that the
binary support indicator variables share a common activity
probability, λ, i.e., Pr{sn = 1} = λ ∀n. For all parameters
exceptσ2

e , we uses and θ̄ as the so-called “missing” data of
the EM algorithm, while forσ2

e we usex̄.
After an initial iteration of AMP-MMV, approximate

marginal posterior distributions are available for each of
the underlying random variables, e.g.,p(sn|ȳ), along with
pairwise joint posterior distributions, e.g.,p(θ(t)n , θ

(t−1)
n |ȳ).

With these distributions, it is possible to perform the iterative
expectation and maximization steps required to maximize
p(ȳ|Γ) in closed-form. We adopt a Gauss-Seidel scheme,
performing coordinate-wise maximization, e.g.,

λk+1 = argmax
λ

Es,θ̄|ȳ

[

log p(ȳ, s, θ̄)
∣

∣ȳ, λ,Γk\{λk}
]

,

wherek is the iteration index common to both AMP-MMV
and the EM algorithm. In TableIII we provide the EM
parameter update equations for our model.

V. NUMERICAL STUDY

In this section we present a limited summary of an ex-
tensive numerical study that was conducted [13] to explore
the performance characteristics and tradeoffs of AMP-MMV.
MATLAB

R©
code was written1 to implement the algorithm de-

scribed in SectionIII , along with the EM parameter estimation
procedure of SectionIV.

1Code available atece.osu.edu/∼schniter/turboAMPmmv.

For comparison to AMP-MMV, we tested two other
Bayesian algorithms for the MMV problem, MSBL [8] and T-
MSBL2 [11], along with a recently proposed greedy algorithm
designed specifically for highly correlated signals, subspace-
augmented MUSIC3 (SA-MUSIC) [7]. We also implemented
an oracle-aided support-aware Kalman smoother (SKS), which
provides a lower bound on the achievable MSE of any algo-
rithm.

Three performance metrics were considered throughout our
tests. The first metric, which we refer to as the time-averaged
normalized MSE (TNMSE), is defined as TNMSE(x̄, ˆ̄x) ,
1
T

∑T
t=1 ‖x

(t) − x̂(t)‖22/‖x
(t)‖22, wherex̂(t) is an estimate of

x(t). The second metric is the normalized support error rate
(NSER), defined as NSER(S, Ŝ) ,

(

|S \ Ŝ| + |Ŝ \ S|
)

/|S|,
whereS and Ŝ are the sets of true and estimated supports,
respectively. The third and final metric is runtime, which is
an important metric given the prevalence of high-dimensional
datasets.

In Fig. 3, we plot our three metrics as a function of
the measurements-to-active-coefficients ratio,M/K, where
K , |S|. Simulation details are provided in plot titles. For
AMP-MMV, two traces appear on the NSER plot, with the
© marker corresponding to aK-aware support estimation
method used by both MSBL and T-MSBL, and the△ marker
corresponding to aK-agnostic support estimate obtained
from AMP-MMV’s posteriors p(sn|ȳ). We see that, when
M/K ≥ 2, the TNMSE performance of both AMP-MMV
and T-MSBL is almost identical to that of the oracle-aided
SKS. However, whenM/K < 2, every algorithm’s support
estimation performance (NSER) degrades, and the TNMSE
consequently grows. Indeed, whenM/K < 1.50, all of the
algorithms perform poorly compared to the SKS, although
T-MSBL performs the best of the four. We also note the
superior NSER performance of AMP-MMV over much of
the range. From the runtime plot we see the tremendous
efficiency of AMP-MMV. Over the region in which AMP-
MMV is performing well, we see that its runtime is more
than one order-of-magnitude faster than SA-MUSIC, and two
orders-of-magnitude faster than either T-MSBL or MSBL.

A key consideration of our method is ensuring that it
is suitable for high-dimensional problems. Our complexity
analysis indicated that a single iteration of AMP-MMV could
be completed inO(TNM) flops. However, to verify that it
scales well with problem size, we performed an experiment
in which the signal dimension,N , was swept logarithmically
over the range[100, 10000], andM was scaled proportionally
such thatN/M = 3.

The results of this experiment are provided in Fig.4. Several
features of these plots are of interest. First, we observe that
the performance of every algorithm improves noticeably as
problem dimensions grow fromN = 100 to N = 1000, with
AMP-MMV and T-MSBL converging in TNMSE performance
to the SKS bound. The second observation that we point out

2Code available atdsp.ucsd.edu/∼zhilin/Software.html.
3Code obtained through personal correspondence with authors.

ece.osu.edu/~schniter/turboAMPmmv
dsp.ucsd.edu/~zhilin/Software.html
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Fig. 3: A plot of the NSER, TNMSE (in dB), and runtime of T-MSBL, MSBL, AMP-MMV, and the SKS versusM /K. Correlation coefficient1−α = 0.90.
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Fig. 4: A plot of the NSER, TNMSE (in dB), and runtime of T-MSBL, MSBL, AMP-MMV, and the SKS versus signal dimension,N . Correlation coefficient
1− α = 0.95.

is that AMP-MMV is extremely fast. Indeed, a problem with
NT = 40000 unknowns can be solved accurately in just
under 30 seconds. Finally, we note that AMP-MMV scales
with increasing problem dimensions more favorably than the
other methods; atN = 10000, AMP-MMV runs two orders-
of-magnitude faster than the other techniques.
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