Fast Bayesian Matching Pursuit

Philip Schniter, Lee C. Potter, and Justin Ziniel
Dept. of ECE, The Ohio State University, Columbus, OH 43210.
e-mail: schniter@ece.osu.edu, potter@ece.osu.ede).2i@osu.edu.

Abstract—A low-complexity recursive procedure is presented recent results by several authors [13]-[15] have demadestra
for minimum mean squared error (MMSE) estimation in linear  sufficient conditions omA, v, and sparsity ofc such that the

regression models. A Gaussian mixture is chosen as the prior convex problem in (3) fop = 1 provides the uniaue solution
on the unknown parameter vector. The algorithm returns both P (3) fop P q
to the non-convex task

an approximate MMSE estimate of the parameter vector and a
set of high posterior probability mixing parameters. Emphasis
is given to the case of a sparse parameter vector. Numerical
simulations demonstrate estimation performance and illusate
the distinctions between MMSE estimation and MAP model

selection. The set of high probability mixing parameters nbonly  These proofs have validated the widespread use of (2)-(3),
provides MAP bas_ls selec_tlor_l, b_ut also yields relative pradiilities providing a deeper understanding, spurring a resurgesrest,
that reveal potential ambiguity in the sparse modef . - . w . L
and promoting the interpretation as “compressive serising.
|. INTRODUCTION The large class of methods adopting (2) may be interpreted
as implicitly seeking the Bayesian MAP estimatezofinder
a sparsity inducing prior

min ||z]lo st |[Az —y||3 <e. 4)

Sparse linear regression is a topic of long standing inter
in statistics and signal processing. The linear regressiodel
is

_2 p
y = Az +v, (1) p(@) x exp{ 2Hme}' (6)

with unknown parameter vectar, unit norm columns in the  The method of sparse Bayesian learning [16], [17] expicitl
regressor matrim, and additive noise. We prOVide a brief, adopts a Bayesian framework Wfﬂa independent, zero-mean,
and necessarily incomplete, survey of existing approachesussian with unknown varianeé. The unknown variances
with an emphasis on themes relevant to the proposed estimagge given the Gamma conjugate prior, and an expectation-
Algorithmic approaches have been proposed over sggaximization (EM) iteration computes a MAP estimatezof
eral decades, providing greedy heuristic solutions. Exam-| e jiterature, primary focus is placed on the detectibn o
ples include CLEAN [1], iteratively re-weighted least-s€s ¢ feyy significant entries of the spatse-a task alternatively
[2], and orthogonal matched pursuit (OMP) [3]. Tropp angl,own as model selection or basis selection. In contrast, we
Gilbert [4], for example, provide sufficient conditions dmet adopt a minimum mean-squared error (MMSE) estimation
sparsity ofz and correlation among columns &f such that ,rmyation and focus on accurately inferring from the
the gre.e.dy.OMP prpvides correct model selection with hi%isy observationsy. The MMSE estimation approach was
probability in the noiseless measurement case. likewise adopted in a crisp exposition by Larsson and Selén
In addition to greedy approaches, penalized least-squajgg). as they noted, the Bayesian formulation requaesiori
solutions forax .have likewise been presented in the pa;t fOlérssumptions that are explicitly stated and admit unamhiguo
decades. In this class of approaches, parameters are f@inderpretation. (We specifically identify similarities 8] in

the optimization Section V.)
& = argmin ||Am—y|\§+/\||m||g, 2) As a byproduct of approximating the proposed MMSE
* estimation algorithm, we also provide exact ratios of piste
or, equivalently for some > 0 probabilities for a set of high probability solutions to the
& — argmin [], st [[Az—y|2<e 3) detecti_on prot_)lel_”n. These reIatiye probabilities serveeteal
P P 2 potential ambiguity among multiple models, due to low signa

Ridge regression [5] (Tikhonov regularization) adopts- 2, to-noise ratio and/or significant correlation among colsrim

while basis pursuit [6] and Lasso [7] uge= 1. Equation (2) the regressor matrix.

has been widely adopted, for example in radar imaging [8], im The remainder of the paper is organized as follows. In

age reconstruction [9], [10], and elsewhere [11], [12].dalet Section Il, we state the signal model and explicitly identif
the assumed priors. In Section Ill, we describe our proposed

1This work was supported by the National Science FoundatimeuGrant technique, and in Section IV we investigate its performance
0237037, the Office of Naval Research grant N00014-07-B0g#® Wright

Brothers Institute grant GRT00009715, and AFOSR underawiao550-06- Numerically. In Section V, we discuss our findings, and in
1-0324. Section VI we conclude.



Il. SIGNAL MODEL can be quite small and therefore practical to compute. \Wgrki
Consider observing € R, a noisy linear combination of I" the log domain, we find

. N.
the parameters ix € RY: u(s) = Inp(y|s)p(s) (11)
y = Az +v, (6) -~
= Inp(yls) + > _ np(sn) (12)
where the noisev is assumed to be white Gaussian with n=0
varianceo?, i.e., v ~ N(0,0%I,,), and the columns ofd = Inp(y|s) + ||slloInp1r + (N —||s]lo) In(1 — p1) (13)
are taken to be unit-norm. Our focus is on the over-deterchine  — 1) p(y|s) + ||s]|o In 2L Nln(l—p) (14)
—Dp1

case (i.e.,N > M) with a suitablysparseparameter vector N 1 LT .
z (i.e., ||lz/|o < N). —5 In27 — 3Indet(®(s)) — 3y ®(s) "'y

To model sparsity, we assume that the parameters are + |[slloIn 55+ + Nln(1 — p1). (15)
generated from a Gaussian mixture density:

xz|s ~ N(0,R(s)), @)

We will refer to u(s) as thebasis selection metric

B. MMSE Parameter Estimation

where the covariancR(s) is determined by a discrete random For applications in which the identification of the most prob
vectors = [sg,...,sn—1)7 of mixture parameters. For sim-able basis is the primary objective, the sparse coefficients
plicity, we take R(s) to be diagonal with R(s)],,», = agn, can be regarded as nuisance parameters. In other appigatio
implying that {z,|s,}.-; are independent with:,|s, ~ however, estimation of: is the primary goal.
J\/(O,agn). Also for simplicity, we assume that the mixture The MMSE estimate ok from y is
arameterg s, }V_! are? Bernoulli(p;). To model sparse, .
\I?ve choosesy{gn:noioandpl < 1. v P Zmmse = E{z|y} = Zp(sly)E{:nlys} (16)
From the model assumptions it can be seen that s€S

g

where from (8) it is straightforward (e.g., [19, p. 155]) to

ol ). e

_ T (o)~
where E{z|y,s} = R(s)A" ®(s)"'y. (17)

T 5 Although exact evaluation of (16) involves a summation over
®(s) == AR(s)A" + 0" L. (®) 9N terms, which may be computationally infeasible, the
1. ESTIMATION OF BASIS AND PARAMETERS MMSE estimate can be closely approximated using only the

. . . dominant posteriors:
In this section, we propose an efficient search procedure

to find the most probable basis configurations along withrthei Tammse = Z p(s|ly) E{x|y, s}. (18)
respective posterior probabilities. These posteriorstican be SES,

used to compute an MMSE estimate of the sparse paramei§3.yise, the covariance of the corresponding estimatioore

z. can be closely approximated as
A. Basis Selection Metric Cov{zly} ~ Z p(sly) Cov {z|y, s} (19)
As a consequence of the model described in Section Il, the s€S,

nonzero locations irs specify which of the basis elements Cov{z|y, s} = R(s) — R(s)AT®(s)"'AR(s). (20)
(i.e., columns ofA) are “active.” Thus, basis selection reduces _ _ _

to estimation ofs. Because we have adopted a probabilisti¥ote that, in evaluating (18)-(20), the primary challenge
model for {s,y}, we can not only computevhich of the becomes that of obtainings|y) and®(s) " for eachs € S..
basis configurations are most likely, but atsow likelythese In the sequel, we propose a fast algorithm to search for the
bases are. The latter is accomplished through the estimatffPminant basis configurations, that, as a byproduct, also

of dominant posteriorg(s|y). generate®(s|y) and ®(s)~! for each of thes returned by
The posterior can be written, via Bayes rule, as the search.
p(yls)p(s) C. Bayesian Matching Pursuit
plsly) = YsesPyls)p(s')’ (10) We now describe an efficient means of determinfhgthe

set of mixture parameters yielding the dominant values of
p(s|y), or, equivalently, the dominant values pfs). First
we present a prosaic description of the search heuristic; th
detailed algorithm will be specified in Section IlI-E.
The search starts with= 0 and first “turns on” one mixture
2in other words sy, is binary with Pr{s, — 1} = p1 andPr{s, — 0} — Parameteratatime, yielding a set®fbinary vectorss which
1—pr. we refer to asS(M). The metricsu(s) for the N vectors in

whereS = {0, 1}", which shows that estimating(s|y)}scs
reduces to estimatingp(y|s)p(s)}scs. The size ofS makes
it impractical to computép(s|y)} or {p(y|s)p(s)} forall s €
S. However, the sef, responsible for thedominantposteriors



SM are then computed, and the elementsSéf) with the which, combined with (15), yield
D largest metrics are collected ifi\". For each candidate _ 1] ot Th )2 4 In P (32

in SV, all locations of a second active mixture parameter are sn) = p(s) + g fn+ 5 On(y ba)” + In 755 (32)
then considered, yieldingvV —1)+ (N —2)+---+(N—-D) = An(s)

ND — 2B+ ynique binary vectors to store (2. The _ 3 _ _
metrics uu(s) for all vectors inS® are then computed, and!" SUmmaryA,(s) in (32) quantifies the changglln our basis
the elements o2 with the D largest metrics are collected inS€lection metrig.(-) due to the activation of the'™ tap of s.
S92, Then, f(_)r eac_h candidate vector &), aI_I possibilities g Fast Bayesian Matching Pursuit

of a third active mixture parameter are considered, andethos Notice that the cost of computing3, 11:,:,01 via (24)-(25)

: . 2(3)
with the D largest metrics are stored ifi,”. The process is O(NM?) if standard matrix multiplication is used. As we

. So(P)
continues untilS,”” is computed, wherdlz can be cho(sPe;n now describe, the complexity of this operation can be made
to makePr(|[sllo > P) sufficiently smalf: Note thatS."”  jinear in M by exploiting the structure ob(s)~".

constitutes the algorithm’s final estimate &f. Henceforth Say thatt = [t,, ¢, t,]7 contains the indices of active
. . . A - ) sy lp
we denote this final estimate k8. elements ins. Then, from (23),

D. Fast Metric Update ®(s) = LIy —o? X0 8O (33)

For use with the aforementioned Bayesian matching purswi;]ere b and 3 denote the values df and 3 generated

(BMP) algorithm, we propose a fast metric updatg V‘.’h'cwhile activating indext; in the mixture parameter vector
computes the change in(-) that results from the activation

of a single mixture parameter. More precisely, if we deno
by s,, the vector identical ta except for then!” coefficient,

defined by the active indicés, ..., t;_1]. From (24), we are
quired to compute

which is active ins,, but inactive ins (i.e., [s,], = 1 and b, = Ha, -0} 3" O b g, (34)
[s]. = 0), then we seek an efficient method of computing H’a’
A, (8) := p(sn) — u(s). Note that the metric at the root node =
(e, s=0)is when activating then(t_’; tap in s. The key observation is
N M 9 1 9 that the coefficientdc,,’ }"-' need only be computed once,
p(O0) = =3 n2r = 5 Ino” — ooyl i.e., when index; is activated. Furthermorec,’}N=' only
+ Nln(l —p1) (21)

need to be computed faurviving indices ;. These tricks
via (15) and the fact tha®(0) = 021 ;. form the foundation of the Fast Bayesian Matching Pursuit

To derive the fast metric update, we start with the properfyBMP) algorithm outlined in Table I. From the table, it is
that, for anyn ands, straightforward to verify that the number of multiplicat®
required by the algorithm i©®(NM PD).

_ 2 T
®(sn) = ®(s) + oranay, (22) IV. NUMERICAL EXPERIMENTS
from which the matrix inversion lemma implies A. FBMP Behavior
B(s,)"! = B(s)"! - U%ﬁnbnbz (23) Numerical experiments were conducted tq investigate the
b = B(s)-! 24 performance of FBMP from Table | for various values of
n = ®(s)" an . (24) model and algorithmic parameters, and the results aretexpor
Bn = (1 —i—afafbn) . (25) in Figs. 1-5. Unless otherwise noted, the experiments used
. . N = 256, M = 64, SNR = 15 dB, p; = 0.04, and
Equations (22)-(25) then imply P = [grfc*1(2Po) 2Np1(1—p1) + Np1| where Py =
Y ®(s,) y = yT (B(s) " — crfﬁnbnbf)y (26) 9.00005_ is the target value oPr{|s||o > fv} as suggested
— yT®(s) "y — 026, (y"bn)? @7) I Sectlon IlI-C. Here We.USSNR := 2L~ as motivated
B 5 T 28 by the unit-norm assumption on the columns4f The plots
Indet(®(s,)) = Indet (B(s) +o1anay,) (28) represent an average 860 independent model realizations.

=1In {(1 +olal®(s) 'a,) det (@(s))} For each realization ofA, an i.i.d. normal matrix was drawn
Indet(®(s)) — In 3 (29) and then scaled to make each of_ its colur_nr_15 unit-norm. Note
" that the average number of active coefficieht§||xz|o} =
[snlloln 2= = ([Isllo + 1) In $£- (30) p,N is approximately equal td0 when p; = 0.04 and
= ||slloIn &~ +1In (31) N = 256. When referring to the “normalized mean-squared
error” (NMSE) of an estimate, we meark{||z—=z||3/| z|3}.
30ne could also determine the stopping paraméteadaptively. In Fig. 1, we plot NMSE versus observation length for
“Notice that||s||o is BinomialN, p1) distribution. WhenNp; > 5, it FBMP under several values of the search parameteRecall
is common to use the approximatidfs|lo ~ A" (Np1, Np1(1 —p1)). in  that D effects a tradeoff between search accuracy and search
which casePr(||sllo > P) = %erfc(\/%)- complexity (the latter of which is expected to grow linearly

P1
1=p1”’



Ho,1 = —ﬂln27r — Mlno - 20—2||y||2 + Nln(1l —p1);
forn=1: N
bl,n :0'720177,;

Bl,n = (1 + 0'%&3;817,1) 71;

- 2 ~
f1,n = po,1 + %logﬁl,n + %51,7L(yTbl,n)2 + log f]pl ;
end

forg=1:D,

n. = n corresponding ta" largestfiy rn;

Hl,g = 1m0

b(l) — bl n*' (1) ATb(l) 6(1) 6 n* 13 = ny;
end '
forp=2:P,

ford=1:D,

form=1:N,
byn =02 Zpl i)ldﬁp 1d[$)1d} ;

Bd,n (1""0'1 de n)
2 - ~
Md n=~HMp-1,dt+ 35 10g6d,n + %6d,7L(yde,7L) + lOg

if ne {t( )1 d} thenﬁdvn = —o0;
end
end
forq=1:D,

{d*,n*} ={d, n} corresponding ta" largestjig ,;
Hp,q = Md* Ny

*Pl ’

b(pg_bd* n*' c;’pg ATbgjf)Z’ (p) 'Bd* ”*. t(pf)l = Mx;
fore=1:p—1,
() (i) . (1) () . () (3) |
by _bp 1Lq Cpa ‘1,q ﬁ 517 1,q° tp _tp 1,9’
end
end
end
TABLE |
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in D). There we see that NMSE performance improvedas
gets larger, i.e., as the average number of unknown paresne
per measuremerﬂ}% decreases. Fap =1 (i.e., the simplest
possible search), Fig. 1 shows a “knee” in the curvéfat
64 (i.e., ¥ — (.16) below which NMSE degrades quickly.

' M

By increasing search complexit), the knee shifts so that
the FBMP is robust to a wider range éf (e.g., M = 48
= 0.21 when D = 5). The benefits of increase

or XN
diminish quickly for D > 5, however.

In Fig. 2, we plot the number of active basis elements mi
ing from FBMP’s estimate of the MAP basis configuration

Smap = argmaxp(s|y). (35)

SES,

when % > 0.16, increasingD from 1 to 10 can yield an
NMSE improvement of3 dB. When% < 0.16, however,
D =1 appears to suffice.

In Fig. 4, we plot NMSE versuSNR for FBMP under
several values of search parameferwhere{M, p;} corre-
spond to the aforementioned breakpoints in the NMSB4s-
and NMSE-vsp; N curves). Figure 4 shows a satisfying linear
relationship between NMSE ar8NR (in dB). As expected,
the effect of increasind from 1 to 10 is negligible because
p;\évv = 0.16; a more significant effect would be expected if
B2+ had been larger.

In Fig. 5, we plot NMSE versuSNR for two FBMP-
derived estimates: the (approximate) MMSE estim&i@mse
from (18) and the quasi-MAP estimaigmap from (36):

-'ﬁamap = E{m|ya§map}- (36)

WhereasZammse IS the averageof the conditional MMSE
estimatesE{x|y, s} over s € S,, the estimateZamap IS
MMSE conditioned on (FBMP’s estimate of) the MAP basis-
configurationsmap. In terms of average NMSE, Fig. 5 demon-
strates thatZammse are aboutl dB better thanZmgp at
SNR < 10 dB and abouf.5 dB better alSNR > 10 dB. The
improvement reflects the advantage of allowingdacertainty
in the estimated basis.

Finally, in Fig. 6, we plot average FBMP runtime versus
search parameteb. As expected from the algorithmic de-
scription in Table I, the runtime scales linearly in

B. Comparison To Other Algorithms

In Figs. 7-8 we compare FBMP to several other popular
arse estimation algorithms, including SparseBayes, [16]
MP [4], StOMP [20], GPSR-Basic [21], and BCS [22].
Unless otherwise noted, the model parameters were set at
N =512, M = 128, p; = 0.04, and o2 = 0.001 (which
corresponds t&NR = 19 dB at the nominal values a¥, M,
and p;). Our plots represent an average 16¥0 independent
model realizations.
For FBMP, we usedhonoptimized MATLAB code (which

iswe plan to optimize in the near future), and unless otherwise

oted usedD = 5 and the samé’ specified in Section IV-A.

r the other algorithms, we used the publicly available
implementations that were found at the web-sites listed in
our bibliography. The algorithmic parameters were chosen

In particular, the traces in Fig. 2 show number-of-missédargely in accordance with suggested values provided by the
versus observation lengft for FBMP under several values ofauthors of the software, or in accordance with values used in
search parametdd. Because the number-of-misses in Fig. 2xamples that accompanied the algorithms. The SparseBayes
closely parallel the NMSEs in Fig. 1, we conjecture that thalgorithm was tested with the initial hyper-parameter set t
sub-optimality of FBMP’s greedy search is to blame for the = 1. StOMP was tested using the “False Alarm Control”

relatively large NMSE values that occur whéh < 64 (i.e.,

when 2% > 0.16).

thresholding strateg)', with the thresholding parametérnse

(1 — +|zlo), where the default number of iterations,

In Flg 3, we plot NMSE versug; N, the expected numberQ = 10, was used. The;-penalty in the GPSR algorithm
of active coefficients, for FBMP under several values ofgearwas chosen as = 0.1 A”y||.., and the MSE kept for
parameterD. There we see that NMSE performance quicklgomparison purposes was the smaller of the MSEs of the
degrades a®; N increases above; N = 10 (i.e., above un-debiased and debiased estimates. The BCS algorithm was

PlN

= 0.16), mirroring the results in Figs. 1-2. As in Fig. 1,tested with the “Adaptive CS” option turned off.
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In Fig. 7 we plot NMSE versus observation length (at N:512 pL: 0.04 D: 5 sig2: 00010 tals: 100
o2 = 0.001) for the various sparse estimation algorithms. ‘ ‘ ‘ ‘ ‘ ‘
There we see that FBMP achieved significantly lower NMSE
than the other algorithms over the examined rangé/ofin
particular, it outperformed BCS by approximatelydB, it
outperformed OMP by dB at smallA/ and 10 dB at large
M, and it outperformed the other algorithms by even more. In
Fig. 8 we plot NMSE versuSNR (at M = 128) for the vari-
ous sparse estimation algorithms. Again, the NMSEs actlieve
by FBMP were significantly lower than those achieved by the
other algorithms. AGNR = 22 dB, FBMP outperformed BCS
by approximately3 dB and the other algorithms by 9 dB; |
at SNR = 15 dB, FBMP outperformed all other algorithms S o660
by > 6 dB; and, atSNR = 3 dB, FBMP outperformed GPSR ‘ ‘ ‘ ‘
by approximatelyl dB and the other algorithms by 5 dB. M

Finally, in Fig. 9, we plot average runtime versus observa- _ _ _
tion length)\/ for the various sparse estimation algorithms. Fd9: 7'h Normi“z?ld '}"SE versus observation lendthfor several algorithms.
FBMP, we used> = 1. Figure 9 shows that FBMP is about an( ee the graph itle for configuration.)
order of magnitude faster than SparseBayes, on the same orde
of complexity as BCS, and about an order of magnitude slower N:512 M: 128 D:5 pL: 0.04 trias: 100
than OMP, StOMP, and GPSR. We anticipate that optimized S
FBMP code will yield improved runtimes.

—&— FBMP
—— SparseBayes
—— OMP
StOMP
—4%— GPSR

BCS

Normalized MSE [dB]

—&— FBMP
—— SparseBayes
——— OMP

#— StOMP
—&— GPSR
BCS

V. DISCUSSION

The Bayesian framework provides a report on the confi-
dence of estimates of both the coefficieatsand the basis
configurations. In particular, the basis selection metyi€s)
provides a posterior confidence label for a candidate basis
configurations, in addition to providing the MMSE estimate
Zmmse through (16). Specifically, from (10), we can write the ol
posterior probability of basis configuratienas

—10F

151

Normalized MSE [dB]

explu(s)l _ eplus)} ag
s'eS eXp{/L(S’)} ZS/ES* eXp{,LL(S’)} ’ P s s 10 12 1 16 18 20 22

SNR [dB]

p(sly) = 5

where the approximation in (37) includes only the basis
configurationsS, C S that account for the dominant valueg,/9- 8- Normalized MSE versuSNR for several algorithms. (See the graph
. . . . title for configuration.)
of exp{u(s)}. Likewise, (19) provides an approximate error
covariance for the MMSE estimate,mse. These posterior
confidence values reflect the ambiguity inherently present i
the sparse inference problem—an ambiguity especiallyegtid
when the SNR is low and/or the correlation among the
columns of A is high. | A A A A
Standard errors for estimated are largely absent in the 1
compressive sensing literature. Exceptions are found jn [7 e
[22] which give the error covariance for the simple linear e
problem conditioned operfect knowledge of the active basis
elements As noted by Tibshirani [7], such a measure of
posterior uncertainty has dubious value, because “a difficu
with this formula is that it gives an estimated variance0of Wil — p——

for predictors with”s; = 0. In this light, we expect certain o IRV
advantages for algorithms that consider the active basis as o am
implicitly uncertain. B e
A Gaussian mixture model similar to that in Section II JA VT
was likewise adopted by Larsson and Selén [18], who alsp ) ) )
constructed the MMSE estimate in the manner of (18) but wiEé%egiheAgfgzﬂii{%”mig’ﬁﬁ;ﬂfact’i%ff)wat'on lengfhfor several algorithms.

an S, that contains exactly one sequenctr each Hamming

N:512 D:1 pl:0.04 sig2w: 0.0010 trials: 100
T T T T

Mean runtime (s)
e
S

— — "

P e e e RN




weight 0 to N. They proposed to find these via greedy imaging [23], where micro-liter particulate probes aresitied
deflation, i.e., starting with an all-active basis configiaa into a tumor and fill less than 0.25% volume in the field of
and recursively deactivating one element at a time. Thes, thew. The fabrication of the paramagnetic signal probesites
D = 1 version of the BMP heuristic from Section IlI-Cin variable shape, size and electron spin density, givisg ri
recalls the heuristic of [18], but in reverse. Note, howevelo a non-zero-mean and nearly Gaussian distribution ofasign
that thefast D = 1 BMP presented in Section llI-E has astrength in a very few active voxels.

complexity of only O(N M P), in comparison toO(N3M?)

for the technique in [18]. Given the typically large valuds o REFERENCES
N encountered in practice, the complexity of FBMP can be
several orders of magnitude lower than that of [18]. [1] J. Hogbom, “Aperture synthesis with a non-regular dtistiion of
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