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Abstract

A low-complexity recursive procedure is presented for ni@gdection and minimum mean squared
error (MMSE) estimation in linear regression. Emphasisivergto the case of a sparse parameter vector
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. INTRODUCTION

Sparse linear regression is a topic of long-standing intenesignal processing, statistics, and geo-

physics. The linear model is given by
y = Az +w, 1)

with observation vectogy, known regressor matrid, unknown coefficients:, and additive noisew. In
sparse problems, the prior belief is that only a small faacf coefficients are non-negligible.

We adopt a Bayesian approach, which we now review in generaist Let+, denote a candidate
model, with £ indexing the countably many models under consideration.ridr pprobability p(vx) is
assigned to each model, and a prd6y|y:) is adopted for the parameters of each model. For example,
in (1) a modekhy,, might indicate which entries i € RV are nonzero, resulting i2¥ candidate models.
For linear regression, a model is also known as a variablecseh or basis selection. Margining out

parameters and conditioning on the observations yieldeepgos model probabilities

p(y|ve)p(vk)
> p(ylv)p(y;) (2)

Pairwise comparison of candidate models is given by theepiostodds

p(vkly) =

p(wly) — plylw) (k) (3)

p(vly)  plyly) p(y)
The model posterior probabilities give a full descriptiontoé post-data uncertainty and are useful for

inference and decision tasks. A common choice is to compsiege model that maximizes the posterior
probability—the MAP estimatey,.. However, to obtain the minimum mean squared error estimiig
one must compute a weighted average of conditional meamasis over all models with nonzero
probability,

Tmmse = »_ p(kly) E{w|y, w}. (4)
k

Bayesian model averaging (e.g., [1], [2] and referencesethgis a name sometimes given to this
incorporation of model uncertainty and stands in contrasinbdel selection, which is the report of a
single model. Thus, the essential element provided by thee®agy approach is the quantification of
posterior model uncertainty. The posterior odds reveal maicdy among multiple candidate solutions
that are ambiguous due to observation noise or correlatioong columns in the regressor matrit,

Bayesian techniques are classical; the novelty here is ta sfiicomputational techniques that make
Bayesian estimation not only tractable, but low complexity the sparse linear model, with emphasis

on the case of fewer observations than unknown variables.
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This manuscript is organized as follows. In Section Il we brisflyvey existing approaches to sparse
linear regression. In Section Ill, we state a flexible signaldetcand priors for sparse signals; the
priors explicitly specify our modeling assumptions and @donecise interpretation. In Section IV, we
describe our proposed algorithm. A tree-search is combimigd a low-complexity update of model
posterior probabilities to find a dominant set of likely made\n algorithm for computing approximate
maximum likelihood estimates of the hyperparameters,dasea generalized expectation maximization
(EM) update, is presented in Section V for use when such hyparpgers are not known for a given
application. We numerically investigate in Section VI thgalthm’s performance. In Section VII, we

give specific comparison to related work. Conclusions arensarized in Section VIII.

Il. TECHNIQUES FORSPARSELINEAR REGRESSION

We present a brief and necessarily incomplete survey ofiegiapproaches to sparse linear regression,
with an emphasis on the themes relevant to our proposedguoeéor model uncertainty and parameter
estimation. For convenience, we coarsely partition apgrea into those that do or do not explicitly adopt

prior distributions.

A. Algorithms for sparse signal reconstruction

In sparse signal reconstruction, the general aim is to iiyettte smallest subset of columns of
the regressor matrixA, whose linear span contains (approximately) the obsemstiy. Algorithmic
approaches have been proposed for several decades antyatiadto three categories. The algorithms
return a single model estimate and do not quantify unceytamthe reported estimate. The algorithms
have typically been developed without recourse to prolsiailpriors.

One class of algorithms adopts a greedy search heuristianjidea include CLEAN [3], projection
pursuit [4], and orthogonal matching pursuit (OMP) [5]. Thesést sufficient conditions [6], [7] on the
sparseness af and singular values of subsets of columns4f(e.g., the restricted isometry property
[8]) such that a regularized OMP stably recoversvith high probability.

A second class of algorithms recursively solves a sequehdteratively re-weighted linear least-
squares (IRLS) problems [9]-[11]; recent results [12] for tivéseless case have established sufficient
conditions such that the sequence converges to the spawdason.

A third class comprises penalized least-squares solutmms and has likewise been used for at least

four decades [13]. In this class of approaches, parameterfoand via the optimization

& = argmin | Az — y|} + r|lz|2, )
xr
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or, equivalently, for some > 0
& = argmin |||, st ||Az —y|3 <e. (6)
xT

Ridge regression [14] (i.e., Tikhonov regularization) jpid = 2, while basis pursuit [15] and LASSO [16]
usep = 1. Equation (5) has been widely adopted, for example in imagensruction [17], [18], radar
imaging [19], and elsewhere [20], [21]. With proper choidenorm, total variation denoising is also an
algorithm in this class fop = 1 [22], [23].

A link exists to Bayesian estimation; the large class of méshadopting (5) may be interpreted as

implicitly seeking the MAP estimate af under the prior

p(@) oc exp { — ||} (7)

Solutions depend on choice of hyperparameteende in (5) and (6), and the choice can be problem-
atic; typically, a cross-validation procedure is adoptetiereby solutions are computed for a range of
hyperparameters.

Elegant recent results by several authors [8], [24], [25]ehdemonstrated sufficient conditions dn
w, and the sparsity of the true coefficienis, such that forp = 1 the convex problem (6) provides the

stable solution (8) for certain positive:
min || — xgll2 < Ce. (8)

These proofs have validated the widespread use of (5)-(6yiding a deeper understanding, spurring a
resurgent interest, and promoting the interpretation asnfiressive sampling.” The sufficient conditions
on A are the restricted isometry property [8] (RIP) or a bound anrtutual coherence [25], which is
the maximum correlation among the columnsAn

A constructive procedure faA consistent with RIP remains open [26]. But the compressaveing
hypotheses are met with high probability by draws from aasef random matrices. In this sense,
compressive sampling trades the NP-héydparsest solution task for an intractable experiment desig
then uses randomization for experiment design. In a simiky, randomization has been used inah
hocmanner for over 40 years in array processing for low side-l@sponses [27], [28]. Thus, compressive
sampling theorems offer an invitation to randomized sangpli

In the sparse reconstruction and compressive samplingatlites, primary focus is placed on the
detection of the few significant entries of the spagsea task alternatively known as model selection,

variable selection, subset selection, or basis selectiomddition, an estimate of the parametarss
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also sought. In all these techniques, a single solution tisrmed without a report of posterior model

uncertainty.

B. Bayesian approaches

Bayesian approaches have been widely reported in a varietyhalisciplines. The relevance vector
machine [29]-[31] explicitly adopts a Bayesian frameworkhwr; independent, zero-mean, Gaussian
with unknown variance?. The unknown variances are assigned the inverse Gamma et@jpgor and
an EM iteration computes a MAP estimate wof Although priors are adopted, these approaches do not
compute and report posterior probabilities for candidatelets; instead, a single model is reported that
approximates the MAP model estimate.

In the statistics literature, rapidly advancing computtaghnology and the advent of Markov chain
Monte Carlo (MCMC) methods for posterior computation coneoi to yield a large body of Bayesian
methods for model uncertainty. Linear models, as the canbwarsion of nonparametric regression, have
been widely studied, with attention focused to the oveeqrined case (more observations than potential
predictors). Approaches differ in specification of the mwiand numerical methods for rapidly computing
posterior probabilities for candidate models. For examBfaith and Kohn [32] adopt a log-uniform prior
on the noise variance, an independent Bernoulli prior fiacti®n of nonzero coefficients, and a Zeller
prior* on the coefficients conditioned on both the noise variancetla@dndices of nonzero coefficients.
Then, a Gibbs sampler is used to simulate a pseudorandom esarhphodels (i.e., configurations of
nonzero coefficients) that converges in distribution to tbst@rior model probabilities. In the MCMC
methods, this sequence is used to search for high prolyabilitdels and to obtain posterior weighted
averages for estimation tasks. (See [1], [33] for surveys r@ferences, and see [34] for application
of MCMC to an underdetermined Gabor transform problem.) Ead Yavneh [35] proposed a similar
randomization to identify a sequence of candidate modefandlomized OMP algorithm is used to create
solutions with sparsity|x||p = K. At each instance of OMP, indices are drawn from among cotumn
of A most correlated with the residual. The log-probability ie ttiraw is proportional to the decrease
in the residual. A MMSE-inspired denoising (i.e., estimatedaf) is then generated by averaging, with

uniform weights, the least-squares solutions compute@mueadch model hypothesis. The algorithm is not

1Given the variable selection and noise covariance, the ZeWmprior is zero-mean jointly Gaussian with covariance
go2(AT A)™t, where A, is formed by keeping columns from corresponding to the nonzero coefficients. The prior is

chosen for computational convenience and is inconsistent for the maéhjl].
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derived from a Bayesian formulation; however, the analysithe manuscript adopts the Zellng#prior
and assumes a known number of nonzero coefficients.

Finally, Bayesian model averaging was adopted by Larsson al&h $&86] to approximate minimum
mean squared error (MMSE) estimates. In the sparse ovemuat case, a greedy deflation search is
used to identify high-probability models.

In this paper, we adopt a Bayesian model averaging treatofemiodel uncertainty and we propose
fast computational techniques to compute posterior modebabilities for the underdetermined, or
undersampled data, case. Further, we arrive at a fast cotigputachnique without adopting the Zellner
g-prior. A method for approximate maximum likelihood esttina of hyperparameters based on a

generalized-EM update is given, for cases when hyperpaeasnate not known for a specific application.

1. SIGNAL MODEL

This section defines our signal model and priors. We choose dsept a general model, with
drawn from a@Q-ary mixture of complex-valued Gaussians with arbitraryamse While this generality
affords application to many practical signals without dajiag the proposed fast algorithm, it requires a
complexity of notation relative to the simplest specialesasf the model. The section concludes with a
description of four specific examples of the general model.

We consider problems where unknown coefficients CV are observed through the noisy superpo-

sition y € CM
y = Az + w, 9)

for known A € CM*N and for noisew that is white circular Gaussian with varianeg, i.e., w ~
CN(0,0%1,,), where the columns oft are taken to be unit-norm. Our focus is on the underdetegnine
case (i.e.,N > M) with a suitably sparse parameter vecto(i.e., ||| < N). Although we assume
complex-valued quantities, our methods are suitable fakvalued problems with minor modifications.
To model sparsity, we assume tf’{atn}nNz‘ol, the components at, are i.i.d. random variables drawn
from a@Q-ary Gaussian mixture. For eaah, a mixture parametes,, € {0,...,Q — 1} is used to index
the component distribution. In particular, whep = ¢, then the coefficient,, is modeled as a circular

Gaussian with meap, and variancer;:
J;nHSn = q} ~ CN(:“QHO-(?)' (10)

The mixture parametergs, Y ;! are treated as i.i.d. random variables such thdts, = ¢} = \,. We

choose( 1o, o3) = (0,0), so that the case, = 0 impliesz,, = 0, whereas the casg, > 0 allowsz,, # 0.
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In addition, we choose{)\q}qQ:_O1 S0 thathQ:_l1 A¢ < 1, which ensures that (with high probability) the
coefficient vectorr has relatively few nonzero values.

Usingx = [zo,...,zx_1]7 ands = [so,...,sy_1]7, the priors can be written as
z|s ~ CN(pu(s), R(s)), (11)

where[u(s)], = ps, and whereR(s) is diagonal with[R(s)],, = o2 . Equation (9) then implies that
the unknown coefficientsg, and the measurementg, are jointly Gaussian when conditioned on the

model vector,s. In particular,

s ON Ap(s) | ®(s) AR(s) , 12)
uis) | |R(s)A" R(s)

8

where
B(s) £ AR(s)AY + 51y, (13)

We now provide examples of how the hyperparame@ré\,} o', {114}o -, and{o2}%- could be

chosen.

« Zero-mean binary priarHere,Q = 2, u; = 0, ando? > 0. With this conveniently simple prior,
it can be potentially difficult to distinguish an “active” dfieient from a non-active one, since the
mosta priori probable active-coefficient values are those near zero.

« Nonzero-mean binary prioHere,Q = 2, u; # 0, ando? > 0. Compared to the zero-mean binary
prior, active coefficients have a known nonzero mean alue

« Zero-mean ternary priarHere,Q = 3, u; = —uz, 07 = 05 > 0, and\; = \,. Appropriate for the
real-valued case with no prior knowledge of sign, this mddeilitates the discrimination between
active and non-active coefficients when and o are suitably chosen.

« Q-ary circular prior: Here,Q > 3 and, for allg € {1,...,Q}, we setu, = |u|e/>" a1, 02 =0} >
0, and A, = A;. This generalization of the zero-mean ternary prior is slgtdor complex-valued

coefficients witha priori unknown phase.
2An application of this model arises in electron paramagnetic resonaiRie) (haging, where an exogenous spin deposit is

constructed from a paramagnetic material [37]. For the EPR applicatiomodels variability in the number of spins present

in a polymer-encapsulated microliter deposit.
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IV. M ODEL UNCERTAINTY & ESTIMATING COEFFICIENTS

The observation model (9) is a Gaussian mixture and pressatprincipal problems: model selection
and parameter estimation. The first task is the selection obomeore highly probable models from the
Q" possible models indexed by We refer tos as the “model vector.” In the Bayesian framework, we
also compute posterior probabilities(s|y). The second task is the estimation of the coefficieatdn

this section, we propose a low-complexity method to sinmgtausly accomplish both of these tasks.

A. Model selection

We index the set of all model vectors = {0,1,...,Q — 1}*. The maximuma posteriori (MAP)
model-vector estimate is given by, = argmax s p(s|y). We seek to determine not only the MAP
model-vectors, but also the sef, of all model vectors with non-negligible posterior prolejai along
with their posteriordp(s|y) }scs, . By analogy to data communications, findiggis like “hard decoding,”
whereas findingp(s|y)}ses, is like “soft decoding.”

Using Bayes rule, the model-vector posterior becomes

p(y|s)p(s)
) 14
5 s PSP -
Given S, the posteriors can be approximated by

p(sly) =

p(yls)p(s)
Yses, P(yls)p(s)
Since, for anys, the values op(s|y) andp(y|s)p(s) are equal up to a scaling, the search$pmreduces

p(sly) =~ for s € S,. (15)

to the search for the vectosse S which yield the dominant values @iy|s)p(s). For convenience, we

use the monotonicity of the logarithm to define thedel selection metrie(s, y):

v(s,y) £ Inp(y|s)p(s) (16)
= Inp(yls) +Inp(s) (17)
= —(y— An(s))"®(s) "} (y — Ap(s))

—mmﬂ¢@»—me+%fm&M (18)
=

The assumption of circular complex Gaussian noise was use.8); for real-valued Gaussian noise,
the first three terms in (18) would simply be halved dnea replaced byin 2.

For Q = 2, detection ofs € {0,1}"V coincides with variable selection. Wit > 2, there exist
(Q — )X possible model vectors that yield the same selection of a specified subsefofionzero

coefficients.
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B. MMSE Coefficient Estimation

For applications in which the identification of the most prioleamodel vector is the primary objective,
the sparse coefficieniscan be regarded as nuisance parameters. In other appigatiowvever, estimation
of x is the primary goal.

The MMSE estimate ofc from y is

Tmmse = E{wly} = > p(sly) E{zly, s} (19)
seS

where from (12) we can obtain (via, e.g., [38, p. 155])
E{zly, s} = p(s) + R(s)A"®(s) ! (y — Ap(s)). (20)
Summing over the dominant mode$s yields the approximate MMSE estimate

Zammse = Z p(sly) E{z[y, s}. (21)
seS,

Similarly, the conditional covarianc€ov{x|y}, whose trace characterizes the MMSE estimation error,

can be closely approximated as

Covi{z|y} ~ Z p(sly)[Cov{z|y, s} + (Tammse

seS,
— E{z[y, s})(@ammse — E{[y, 3})H] (22)
Cov{z|y,s} = R(s) — R(s)A"®(s) ' AR(s). (23)

In fact, the (approximate) estimation error can be writtesrendirectly as

tr (Cov{zly}) ~ 3 p(sly) [tr (Cov{zly, s})

seS,

+ |

Tammse — E{w‘y7 S}HQ} : (24)

The primary challenge in the computation of MMSE estimatesoistitain p(s|y) and ®(s)~! for
eachs € S,. In the sequel, we propose a fast algorithm to search for ¢he,sof dominant models

that, in addition, generates the valuesiffxz|y, s} and Cov{x|y, s} for each explored modei.

C. The Search for Dominant Models

We now turn our attention to the search for the dominant n&8gli.e., those that yield significant
posteriorg(s|y). Because the denominator of (14) is impractical to compatethe denominator of (15)

cannot be computed befo& is known, we search fof, by looking fors € S for which p(y|s)p(s) =

March 9, 2009 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 10

p(s,y) is significant according to oua priori assumptions. Due to the relationships, y) = (%),
significant values op(s,y) correspond to relatively large values ofs, y).
To understand what constitutes a “relatively large” valtie @, y), we derive thea priori distribution

of the random variable(s,y) in Appendix A. There we find that
E{v(s,y)} = 2M + N(1 = Xo)do(In [(Z + 1)32])? (25)

for the case thadrg =07 and )\, = \; for all ¢ # 0, where the expectation is taken over batland y.
Thus, for a given paifs’,y}, we can compare(s’, y) to the mearE{v(s,y)} and standard deviation
V/var{v(s,y)} in order to get a rough indication of whethgs’, y} has “significant” probability.
Because brute force evaluation of @ model vectors is impractical for typical values f, we
treat the problem as a non-exhaustive tree search. The mpglelss||y = p} form the nodes on thg!”
level of the tree, wherg € {0,..., N}, so thats = 0 forms the root. We now describe a very general
form of tree search. Say that, after thé" stage of tree-search, the search algorithm knows thé &8t
of models currently under consideration, as well as theioset(s, y) for all s € S(™). At the (m+1)™"
stage, the tree-search i) chooses the suﬁé@} c 8™ of models that will be extended, ii) stores all
single-coefficient modifications of the vectorsﬁém) as the “extended” sej?x(m), iiiy computes metrics
for all models inSﬁm), and, based on these metrics, iv) prunes the cumulativ@?é@?,ﬁ(m} to form
S(m+1) A stopping criterion decides when to terminate the seafatiopped at then'” stage, the search
would return the “significant” models as the s&?t: S(m) We assume that the search is initialized at

the root node, so that(®) = 0 with corresponding metric
v(0,y) = —%|yll3 — MIno? — MIn7 + Nln Ao, (26)

which follows from (18) and the fact tha@(0) = 21 ,. The details of the extension procedure, pruning
procedure, and stopping criterion are algorithm specifig. (elepth-first, breadth-first, best-first). In the
sequel, we will refer to this general approach of hon-extieitree-search guided by the Bayesian metric
v(s,y) asBayesian matching pursuiBMP). Our experiments with various types of tree search hede
us to recommend the specific search approach detailed in SdvtiB. We note that existing MCMC

methods [32], for the over-determined cage> NN, can be interpreted as randomized tree searches.

D. Fast Bayesian Matching Pursuit

Common to all BMP variants (and to MCMC methods) is the neeevaduate the metricév(s’,y)}
for all one-parameter modifications$ of some previously considered model vectoHere we present a

fast means of doing so, which we cédist Bayesian matching pursiBMP).
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For the case thals],, = ¢ and [s'],, = ¢/, wheres and s’ are otherwise identical, we now describe
an efficient method to computd,, , (s,y) = v(s',y) — v(s,y). For brevity, we use the abbreviations

L .q = pg — pg ando? £ o2, — o2 below. Starting with the property
®(s') = P(s) + Ug,ganaf, (27)

the matrix inversion lemma implies

<I>(s’)*1 = <I>(s)*1 — ﬂmq/cncf (28)
cn 2 B(s) la, (29)
Brg =0 q (1+0q, qagcn) ' (30)

In Appendix B it is shown that (27)-(30) imply

Ang (s y)
cH(y— Ap(s)) + pigr.g/02 |
— It a2 /08 g+ By Jo2y)  OgaFO
=1 +In(Ay /) : (31)
2Re {11 g7l (y — Ap(s))}
— |pg qlPelf an + (g /2) 03/,q = 0.

Basically, A, , (s, y) quantifies the change ta(s, y) that results from changing thé” index in s from

gtoq.

Notice that the parametefg:, } '~ !, which are essential for the metric exploration step (3dguire

n= 0’
O(NM?) operations to compute if (29)-(30) were used with standaattimmultiplication. As described
next, the structure of(s)~! can be exploited to make this complexity( N M ).

Suppose thas is itself a single-index modification ofP™®, for which thenP™-th index of sP® was
changed from;P™® to ¢ in order to creates. If the corresponding quantitieel™®}" ! and afp. = have

been computed and stored, then, since (28)-(29) imply that

H
cn = @) = B0 il an (32)
H
= czre ﬁppre ch;)?ecp';fe QAp, (33)

{e, 3=} can be computed using(N M) operations.
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Having computedc, })), the parameter«@@mq/}ij(?:ﬁ:ll can be computed via (30) with a complexity

of O(MN + QN). If we recursively update(s) =y — Au(s) with O(M Q) multiplies using

Z(S) =Yy — A[L(Spre) —Q@ppre [lg gPre, (34)
~——
é Z(SprE)
then {A,, 4 (s) Zj&gj can be computed via (31) with a complexity {M N + QN). Actually, if
o2 =07 Vq#0 (as for all the examples given in Section Ill), thép, = B.1 V¢ # 0, which leads
to a complexity of O(MN + QM).
Going further, if we defineC' = [cy, ..., cn_1] and notice thaC = ®(s)~! A, then we can compute

the s-conditional mean and covariance via
E{z|y, s} = u(s) + R(s)C"z(s) (35)
Cov{zly,s} = (In — R(s)C" A)R(s), (36)

using (20), (23), and the fact th&(s) is Hermitian. Becaus&R(s)C* has only||s||o nonzero rows
and AR(s) has only||s|lo nonzero columns, (35) and (36) can be computed using G}/ ||s||o) and

O(M]||s||3) multiplies, respectively.

E. Repeated Greedy Search

In Section IV-C, we proposed a general method to search forddmainant modelsS, based on
tree searches that start with the root hypothasis- 0 and modifies one model component at a time,
using the model selection metriqs’, y) to guide the search. Then, in Section IV-D, we proposed an
efficient metric evaluation method that consund®g M/ + Q) N) multiplications to explore al{@ — 1) N
single-coefficient maodifications at each tree node visitedneygearch, and an additional complexity of
O(M]||s|lo) andO(M ||s||3) at each node for which the conditional mean and covariance, respegtivel
are computed. In this section, we propose a particulardeaech that, based on our experience, offers a
good tradeoff between performance and complexity.

Our repeated greedy searqiRGS) procedure starts at the root nogle= 0 and performs a greedy
inflation search (i.e., activating one model component ana)tiuntil a total of? model components have
been activated. By “greedy,” we mean that the model compcaativated at each stage is the one leading
to the largest metrie/(s’, y); de-activation is not allowed. We recommend choosihglightly larger

than the expected number of nonzero coefficidifgs||o}, e.9., so thatr(||s|lo > P) is sufficiently
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small® Note that the procedure described so far is reminiscenttbbgonal matching pursuit (OMP) [5]
but different in that the Bayesian metni¢s, y) is used to guide the activation of new coefficients. If at
least one of the” evaluated metrics surpasses some predetermined thresheld, the RGS algorithm
stops. If not, a second greedy inflation search is startedh(ff@ root node) and instructed to ignore all
previously explored nodes. If at least one of tReevaluated metrics from this second search surpasses
the thresholdsnesh, the RGS algorithm stops. If not, a new greedy inflation se@dtarted. The RGS
algorithm continues in this manner unti,esh IS surpassed, or until the number of greedy searches
reaches an allowed maximul,,.x. Recall that the thresholdyesn can be chosen in accordance with
the prior onv(s,y), as discussed in Section IV-C.

The RGS algorithm, using the FBMP recursions from Section IMsDdetailed in Table | for the
simple case thabg = 0% and \, = )\; for all ¢ # 0 (which holds true for all the examples given in
Section III).

Denoting the number of greedy searches performed by RGSa(fmarticular realizationy) by D <
Dnax, a total of DPN(Q — 1) models are examined with corresponding metrits, y). From the table,
it is straightforward to verify that the number of multigitons required to compute all metrics aRd
conditional means i€)(DPNM). Computing thePD conditional covariance$f3(d’p) P=1" requires

an additionalO (D P3 M) multiplies.

F. Exact Odds and Approximate Posteriors

The Bayesian framework provides a report on the confidencetiofi&ss for both the model vectar
and the coefficients:. In particular, the model selection metri€s, y) yields the exact posterior odds in

(3). From (14), we can approximate the posterior probabdftynodel s using the renormalized estimate

D(sly) = exp{v(s,y)} _ exp{v(s,y)}

T Yeesexp{v(sLy)} T Saes expiv(s,y)}

37)

where the approximation in (37) incorporates only the medgl C S that account for the dominant

values ofexp{v(s,y)}. Likewise, the resultingp(x|y):

plxly) = > bsly)p(zly, ), (38)
sES,

3Recall that||s||o follows the Binomia{NV,1— o) distribution. WhenN(1—Xo) > 5, it is reasonable to use the Gaussian

approximation||s|lo ~ A" (N (1 = Xo), NXo(1 — Xo)), in which casePr(|s[lo > P) = 4 erfe (%)
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V% = — L |y||3 — M In(o?7) + N In Xo;
forn=0:N—-1,

rOUt 1 .
Cn 52 Qn,

root — 0_1(1 + O'%CLHCrOOt) :
forg=1:Q -1, )
:g?]t_ root+1n n +Broot rootHy+Z7%2_%+ln%;
end
end

fOI‘ d=1: Dmax,

z=y;
forn=0:N -1,

cn = %

6 6I’00t
forg=1:Q —1,

__root.
Vn,qg = Vn,q

end
end
forp=1:P,
(4, ¢+) = (n,q) indexing the largest element ifv,, . }2=5F "
which leads to an as-of-yet unexplored node.

d,p) _ .
p(4r) = Vny,qxs

3(dp) — gldp=1) @0n,

n — [n,n7;

qlag.a]";

Z < Z = Qny gy,

forn=0:N -1,
Cn < Cn — Bn, Cn, c,lf* an;
Bn =ot(1+alajen)™
forg=1:Q -1,

d, H tg |2 lpgl? Ap.
Vng =V +1n 2 4 Bo|cll 2 + 23|" — L4 +In 3L
1 1 1

end

end

~(d,p) __ 2 H .
(&P = 1 Only [Ulc[n]k‘z—’_lu‘[Q]k]’

d p)
ot Y h_y 2ny Oy [Otnle—tnl;
H T .
— oty am,; ] 8,
end
if max{u(d’p)}p=1;}> > Uresh, then break;

end

TABLE |

REPEATED GREEDY SEARCH VIA FAST BAYESIAN MATCHING PURSUIT
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provides an approximate posterior density that describesuncertainty in resolving: from the noisy
observation. The posterior density is a Gaussian mixtureefifetts the multi-modal ambiguity inherently
present in the sparse inference problem—an ambiguity &dlyeevident when the signal-to-noise ratio

(SNR) is low or there exists nonnegligible correlation amaimg columns ofA.

V. ESTIMATION OF HYPERPARAMETERS VIAAPPROXIMATE ML

When domain knowledge does not precisely specify the hygparpeters,
6 = {{MYomo - {madizo s o° {og)i0 ) (39)
one might opt for maximum likelihood (ML) estimates
Omi = argmaxp(y|0). (40)

For @ = 2, we now present an approximate ML estimator based on thecatmn maximization (EM)

iteration [39], [40]. Sinces € {0,1}", we get
x|37,u170-% ~ CN(Ml‘S)O-% D(S)), (41)

where we explicitly condition on parameters and o2 and useD(s) to denote the diagonal matrix

created froms. The received signay = Ax + w can then be characterized as
yls, p1,0%,0% ~ CN(u1s, 0t AD(s) AT +0%1 ). (42)

Rewriting the conditional pdf using the ratio = g—j and the matrixA; whose columns are selected

from A according to the nonzero entries &f we get
y|s, 1,08, ~ CN (11 As, 03 (A;AT +aly)). (43)

Finally, recall that the log prior fos has the form

N-1
Inp(s|A) = D Inp(sa|) (44)
n=0
N-1
= > In(A+(1-2N)sy), (45)
n=0

where\ £ \g = Pr{s, = 0}. We estimate the parametefs= [\, i1, o, o?] via the EM algorithm, by
treating s as the so-called “missing data.” In particular, at each dpstve apply a coordinate ascent
scheme, i.e.,

é,(fﬂ) = argmax »_p(sly, 9(i))
Ok seS

x Inp(y, 8|0k, {09, {09} 0sk)- (46)
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Below, we use shorthand notatidi for the most recent update of a given parameter, BQd? ||s]|o.
In practice, the2" term summation in (46) is approximated by a sum over the sselbf dominant
modelsS,. For the maximization in (46), we will use the fact tHatp(y, s|6) = Inp(yls, 1,03, ) +
Inp(s|A).
Maximization with respect to\ proceeds according to

A = argmax Z p(s\y,é(i))lnp(sp\). 47
A ees,
Since
0 — 25,

Inp(s|\) = 48
ax e ZA+ (1—2\)sn (48)

K N — K
= 49
o1t (49)

zeroing the partial derivative of (47) w.r.k yields

A =1 - =3 p(sly,07) K (50)
seS
For the M-step update qf;, (46) yields
(i ;(0)
,ug ) _ argmax Z p(sly, 0 ) Inp(y|s, p1,0%, @), (51)
e ses,
where, from (43),
lnp(y]s,,ul,af,a) = —Indet [a%(ASAg + aly)] (52)

— 02 \ly = 1 As|E g, an 4 ar,) o
Zeroing the partial derivative of the analytic right side B w.r.t. u;, we find that

A6 Decg, (s Iy, ) HAH(AZAE 4 ady)!
1

ZSES,( p( ]y, )SHAH(A A +OéI]\/[) 1148
(53)
The update forx is similar in principle, though an approximation is used ito@ify the expressions.
Recognizing thain det [;?(ASAE +aly)] =1Indet [AsAL + aI,] + C, whereC does not depend
on «, and noticing that

8% det [ASASH + CBI]W}

O Indet [A;AT + oIy =
oa Indet [Au A+ al] = S0 AT o]

(54)
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we reason that

det [As AT +aIy] = oM det [a A AT + 1)y (55)
= aMdet [0 TAT A, + Ik (56)
~ aMKs det [AEAS} (57)

where in (57) we assume that< 1. With this assumption,

M- K
L Indet [AsAT +aly) = TS (58)

We can then use the matrix inversion lemma with the smadlssumption to get
(A;AT a1y
1
== [Ty — As(al g, + AT A1 AT (59)

1 N
- [Ty — As(AT A1 A (60)

Q

from which zeroing the partial derivative yields

NG - (i)
alith) = ,,%Zseg* p(3|ya9( )(MfKB)

X Hy—ﬂlASH%M_AS(AfAS)—lAf- (61)

From the definition ofy, (61) gives the required maximization ovet with other parameters fixed.

Finally, maximization w.r.to? is again similar to the procedure fog. Using the fact thaltn det [a%(ASAi?H-
al )] = Mno? + C, whereC does not depend om?, the corresponding partial-derivative technique
yields

(z+1) 1
- s Z p ‘y7 Hy lulASH(A AH—‘,-CMIJ\{)

SES (62)

For computational simplicity, we are motivated to repla&®)( (53), (61) and (62) with simpler
surrogates. Defin@ammse @SZammse restricted to the nonzero coefficients, andrlean andvar denote

sample mean and variance. The proposed surrogates, reqdi(iil ) operations, are

A = 1 — (|| @ammsello/N) (63)
AT = mean(Zammse) (64)
2~ var(y - Aammee) (65)
2 = var(Bammse) (66)
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We choose to terminate the iterations as soon as all paresmaiange by less than 5% of their values

from the previous iteration, or when a maximum number of tgsld/nax, IS reached.

V1. SIMULATION

Numerical experiments were conducted to investigate théoeance of FBMP with approximate
maximum likelihood estimation of hyperparameters from dlaga.

For the first experiment, we chose a “compressiltghat mimics the wavelet coefficients of a natural
signal:zy, = (—1)F exp(—pk) for k =0... N —1 with p € (0,1). With N = 512 and M = 128, we drew
A from i.i.d. zero-mean Gaussian entries which were subselysraled to make each column unit-norm.
The noise was also drawn i.i.d. zero-mean Gaussian usipglagendent) variance that gaiedB SNR.
The reported results represent an averag200f) independent realizations. We compared FBMP to six
publicly available sparse estimation algorithms: OMP [A{OMP [42], GPSR-Basic [43], SparseBayes
[29], BCS [31], and a variational-Bayes implementation @3[44]. The algorithmic parameters were
chosen in accordance with suggestions provided by the eutral, when applicable, adjusted to yield
improved performance. For SparseBayes, the true inverse nariance was provided, and it was not re-
estimated during execution as this led to degraded perfoceneSimilarly, OMP and BCS were provided
the true noise variance. StOMP was tested using both thee'FFdrm Control” and “False Discovery
Control” thresholding strategies; since the latter appeédess reliable for high values of we present
results only for the former. Thé;-penalty in the GPSR algorithm was chosenras- 0.1|| A% y| .,
and the MSE kept for comparison purposes was the smaller oMBEs of the biased and debiased
estimates. The FBMP hyperparameters were initialized;at 0.01, y; = 0, 0 = 0.05, 07 = 2, and
the surrogate EM updates were used to compute approximateshithates of the hyperparameters from
the data.

In Fig. 1 we plot normalized mean squared error (NMSE) defined by

NMSE (dB) = 10logy, ( Z I — w(z)”2), (67)
= H:v 3

whereT is the number of random trials and superscfiptlenotes the trial number. From the figure, it
can be seen that the proposed FBMP with EM hyperparameteragstinprovides NMSE improvements
of up to2dB over OMP and GPSR, and up @8 dB over the other algorithms. The improvements are
due, in part, to model averaging for computationagf,mse and the incorporation of noise power when
computing the conditional MMSE estimate (20). The good penforice of GPSR can be exhibited to

the choice of signal; the sequengeewhile mismatched to the Gaussian mixture prior, is a typitaw
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N =512, M =128, SNR =15dB, D =5E =20, T =2000
max max
,8 T

+FBMPmmSe (w/ EM update)
-10 ——FBMP___(w/ EM update) a
map
3 —v—SparseBayes
-12 ——OMP B
StOMP
——GPSR
—14r . BCS 1
——VB-BCS
B -16- g
w
2
= -18f g
—20- i
—2o| i
_247 |
,2 Il L L L L L L
8 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 1. Normalized mean squared error vergus

N =512, M =128, SNR =15dB, D =5E =20, T =2000
m max

ax

Runtime [s]

—e—FBMP (w/ EM update)
——FBMP (w/o EM update)
—v—SparseBayes
——OMP

StOMP
——GPSR

BCS
——VB-BCS

L L

0.7 0.8 0.9

Fig. 2. Runtime versus.

from a Laplace density, and is therefore well matched to thePMstimator (5) forp = 1, to which
GPSR seeks a solution.
Figure 2 displays average runtimes for the same experimeatndte that the runtimes for FBMP

are reported with and without generalized-EM iterationsereghs the runtimes for the other algorithms
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N =512, M =128, SNR =15dB, D =5E =20, T =2000
max max
60 T T T
—o— FBMP (w/ EM update)

mmse

—a— FBMP (w/ EM update)
map

—v— SparseBayes b
——OMP
StOMP
——GPSR
BCS

50

N
o
T

w
o

“Xrecovery| |0

>

N
o

10

Fig. 3. Solution sparsity versys

do not reflect the repeated executions required to optimize thgustable parameters. FBMP (without
generalized-EM iterations) is significantly faster than Spleyes and VB-BCS but significantly slower
than GPSR, OMP, and StOMP. In exchange for speed, FBMP returrtntyoh MAP model estimate,,
but also a list of other high-probability modefs along with their posterior probabilities; the other six
approaches considered return only a single model estimhates, FBMP is able to give a more complete
interpretation of the data in the face of ambiguity arisingni correlation inA or from measurement
noise.

Fig. 3 shows average sparsity of solutions. We observe thathis “compressible” signal and Gaussian
regressor matrix, the coefficient estimates returned by FBMPamong the sparsest.

In a second experiment, to illustrate the behavior of thedyeree-search, we adopt a figure format
used by George and McCulloch [45] to report MCMC results. Towa exhaustive evaluation of all
candidate models, we s&f = 26 and M = 7. Signals were constructed using the Gaussian mixture
model of Section Il withQ = 2, \; = 0.04, 41 = 0, 07 = 1, and with noise power adjusted to yield
10dB SNR. For illustration, FBMP was provided the true hyperpaeters and used without generalized
EM. Shown in Fig. VI is a rank-ordered list of the posterior proitiies p(s|y). To the right of the
dashed line are the probabilities for th& modelss selected by the search, while to the left of the dashed

line are the probabilities for models not visited (truncate show only the toF00, out of 226 — 59,
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N:26,M:7,SNR:lOdB,A120.04,Ui:1,u1:O,D =20
max

Top
Unexplored
Mixture
Vectors

Y/ Top

. Explored

' Mixture

' Vectors

Rank ordered mixture vector indices

Fig. 4. Rank ordered posterior probabilities, on a logarithmic scale, omthéelss visited by the search heuristic (right of
dashed vertical line) and the tg®0 models not visited (left of dashed vertical line).

models). While the figure displays only one realization, ityipical of our numerical experience. The
figure shows that, i) there exist multiple models with highlgaoility, highlighting the inadequacy of
reporting on the MAP model, and, ii) the low-complexity sgaheuristic is effective in visiting the high
probability models.

In a third experiment, an exhaustive evaluation similah previous one was repeat?@i times (see
Table Il for details), and each time both FBMP and the LarssdarSalgorithm (LSA) [36] were used
to compute estimates af. The resulting average MSE performance is reported in Tablelohg with
the average “distance to MMSE” (D2MMSE)}t — £mmse ||3, Wherez denotes the estimate returned by
the (FBMP or LSA) algorithm and:nmse denotes the exact MMSE estimate. It can be seen that FBMP
clearly outperforms LSA both in terms of MSE and D2MMSE.

In a fourth experiment, we carried out a “multiscale-CS” meng of the popular “Mondrian” test
image. Under the multiscale-CS framework, random Gaussimemble measurements were acquired
from the3 finest-scale Haar wavelet coefficients of 8 x 128 image. In all, 4877 measurements were
acquired from thel6384 unknowns, with different scales being undersampled byeudfit factors. For
comparison, recoveries were obtained using GPSR as well. Batgef this experiment are shown in

Fig. 5, with NMSEs and runtimes reported in the caption. The tegomuntimes correspond to the time
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Algorithm | MSE [dB] D2MMSE [dB]

FBMP —19.7 —24.1
LSA —8.8 -9.1
TABLE I

PERFORMANCE FORBERNOULLI/IID-GAUSSIAN SIGNALWITH N =24, M =8,Q =2, A\; = 0.04, u1 =0, 07 =1, AND
SNR= 15 dB, AVERAGED OVER 204 TRIALS. SEE TEXT FOR DEFINITION OFD2MMSE.

(a) Original image (b) FBMP recovery () GPSR recovery

Fig. 5. Multiscale CS recovery. a) Origina28 x 128 image; b) FBMP recovery: NMSE —16.80 dB, 8.85% of coefficients

active, 38 minutes runtime; c) GPSR recovery: NMSE—13.66 dB, 24.02% of coefficients active2.7 minutes runtime.

taken after the adjustable algorithmic parameters (e.fpr GPSR) were optimized. Relative to GPSR,
the estimate returned by FBMP was more sparse and had lower NMSEok longer to generate. We

note that these results are consistent with those from ther @xperiments.

VIl. DISCUSSION
A. Fast Algorithms: Related Works

A Gaussian mixture model similar to that in Section Il waglikse adopted by Larsson and &g[36],
who, for Q = 2, also constructed the MMSE estimate in the manner of (21) litht an S, that contains
exactly one model vectat for each Hamming weight to N. They proposed to find thesevia greedy
deflation, i.e., starting with an all-active model configuratand recursively deactivating one component
at a time. Thus, thé = 1 version of the BMP heuristic from Section IV-C recalls the h&ic of [36],
but in reverse. Note, however, that tfest D = 1 BMP presented in Section IV-D has a complexity of
only O(N M P), in comparison ta?(N3M?) for the technique in [36]. Given the typically large values

of N encountered in practice, the complexity of FBMP can be séwders of magnitude lower than
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that of [36]. Complexity aside, Table Il suggests that theegly deflation approach of [36] is much less
effective at finding the models vectors with high posteriashability, leading to estimates that, relative
to FBMP, have higher MSE and are further from the exact MMSE ed&m

For Q = 2, a Gaussian mixture model has been widely adopted for theday variable selection
problem. (See, e.qg., [1] for a survey and references.) Thaghdua approaches vary in prior specification,
posterior calculation, and MCMC method (such as Gibbs sarmpi Metropolis-Hastings). George and
McCulloch [45] use a conjugate normal prior afs,o? and a Gibbs sampler that requiréy N?)
operations to computg(s’|y) from p(s|y), where s’ and s differ in only one element. Smith and
Kohn [32] use the point mass null (i.g, = o3 = 0) and the simplifying Zellne prior to achieve
a fast update requirin@(K?2) operations, forks = ||s||o. Approximately M N iterations of the Gibbs
sampler are suggested, yielding a total complexity)¢f/ N2 K2).

B. Bayesian Model Averaging

The Bayesian framework provides a report on the confidencetiofiass for both the moded and the
coefficientsz. In contrast, confidence labels are absent in most of the @sspe sampling literature.
Exceptions are found in [16], [31], which use an (approximdéP estimates, for variable selection
and report the Gaussian error covariance for the linearl@noltonditioned ors, being the true model.
As noted by Tibshirani [16], such a measure of posterior taggy has dubious value, because “a
difficulty with this formula is that it gives an estimated \ace of0 for predictors with”[s,], = 0. In
fact, in our simulations, we observe that is often not equal to the true. Indeed, in order fos, to
equal trues with high probability, for fixed sparsitys|lo/N, the SNR grows unbounded witN" [46].

In this light, we expect certain advantages for algorithivest itonsider the active signal coefficients as
implicitly uncertain.

As a caveat, we emphasize that our greedy FBMP search retnlynsg an estimate of the dominant
subsetS,, along with the values af(s, y) for s € S,. Thus, while the values(s,y) returned by FBMP
can be used to compute exact ratios between the posteribalgtities of the model vectors i§,, the
true posteriors of these configurations (as approximated3By \ith S, in place ofS,) will only be

accurate whers, indeed containss,. In simulation, we observe that the proposed greedy FBMRckear

reliably discoversS, when 2 < —1/log()\y).
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C. Empirical Bayes

Empirical Bayes (EB) approaches have been used in relatedtwvadtimate hyperparameters from the
data under signal models similar to the zero-mean binaoy given in Section Ill. George and Foster [47]
adopted maximum marginal likelihood as in (40) for estimgtparameterg\;, o7} en route to a MAP
model selection using the Zellngrprior. A forward greedy search for the EB was considered. For
A = I, Johnstone and Silverman [48] used maximum marginal likelihfor A\; and established the
asymptotic risk of adaptive thresholding rules. Larsson&en [36] likewise estimated hyperparameters
from the data; forM > N, ad hocestimates were computed from the full-model least-squesémate

using higher-order moments.

D. Informative Priors

In our proposed approach, we have sought to incorporatdqatlysmeaningful prior knowledge when
application-specific insight is available. Further, by useéh&f generalized-EM algorithm, we have pro-
vided a means for trade-off of complexity versus prior krexge, i.e., ML estimates of hyperparameters
may be iteratively estimated from the data. In contrast,dine in statistical literature is to be agnostic

by adopting noninformative priors or hyperpriors.

VIIl. CONCLUSION

In this paper, we proposed an algorithm for joint model d&ecand sparse coefficient estimation,
which we call fast Bayesian matching pursuit (FBMP). We add@eBayesian approach in which a
set of likely model configurations is reported, along with @xeatios of model posterior probabilities.
These relative probabilities serve to reveal potential goiby among multiple candidate solutions that
are ambiguous due to observation noise or correlation anwohgnns in the regressor matrix. The
explicit management of uncertainty is essential for agpilons in which the estimated model vectsy,
and estimated coefficients, are not final products, but are instead statistics for useakimg inference
from the noisy observationg, The proposed search for high probability models and cortipataf their
posteriors is fast in that the computational complexit®is\/ N K'), with M observationsN coefficients,
and K nonzero coefficients. For a modest increase in complexigyptbposed generalized-EM refinement
combines with FBMP to provide an empirical Bayes method fnmeding hyperparameters from the data.
Existing approaches using tree searches or MCMC methodéreeafuleastO (M N2 K?) computation.

In forthcoming work we will report on a large-scale versidi-8 MP that reduces the memory required

in recursively computing posterior probabilities, and wiél give a bound on the probability that a subset
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of coefficients is absent from the MAP model estimate.
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APPENDIXA

MEAN AND VARIANCE OF v(s,y)

In this appendix, we derive the mean and variance(sf y). According to our priors, if is the model
vector from whichy is generated, thepg = Az +w for z|s ~ CN (u(s), R(s)) andw ~ CN (0,021 ;).
This implies thaty — Au(s)|s ~ CN(0,®(s)), so that

(y — Ap(s)"@(s) Yy — Ap(s)) ~ X3, (68)

i.e., a chi-squared random variable with degrees of freedom. Say thdt; denotes the matrix constructed
from the active columns oA. Then, ifag = o? for all ¢ # 0 (as in all the examples given in Section I11)

and if A is orthonormal,

Indet(®(s)) = In ((oF + o2)llsllo 52(M=llsllo)) (69)

2
73
o2

[sllon(Z + 1) + M Ino?, (70)

where ||s||p ~ Binomial(N,1 — X\g). The orthonormal assumption oA is reasonable because the
columns of A were assumed unit-norm in Section Il and, for the class oblgms that guarantee good
sparse estimateany collection of ||s||o columns fromA will be approximately orthogonal. (Recall the

restricted isometry property [8].) Finally, if we assumettha= \; for all ¢ # 0 (as in all the examples
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given in Section 1), then

N-1
Z ln)\sn = HSHOID)\l + (N — ||S||0) In \g (71)
n=0

= NlnXg—[[s]oIn 3. (72)

Using the facts that the mean and variance qf3a random variable aré/ and2M, respectively, and

the mean and variance gk||p are N(1 — \g) and N (1 — X\g) Ao, respectively, we obtain (25).

APPENDIX B

DERIVATION OF (31)
In this appendix, we establish (31) using (27)-(30). Using fact that®(s)~'a, = c,, we find

(y— Ap(s) " ®(s) " (y — Ap(s"))
= (y — An(s) — anpig q)" (2(s) " — Bugenct)

X (y — Ap(s) — anpig q) (73)
= (y— An(s)" ®(s) " (y - An(s))

— Bog et (y — An(s))[’

—2Re {1y 4a;/®(s) " (y — Ap(s))}

+2Re {M;/,qa’gcnﬁ”,q'crlz{ (y - AN(S))}

+ |Mq’,q|205‘1’(3)_1an - |,Uq’,q|25n,q’ (c,?a,n)Q (74)
= (y— Ap(s))"®(s) " (y — Apl(s))
— B |t (y — An(s))

—2Re {uy 4c; (y — Ap(s)) (1 = Bugar'cn)}

+ [tg'q 2anan(1 - »Bn,q’anHCn)- (75)

In the case that2, , = 0, we haves, , = 0, and so
(y— Au(s)) " ®(s) " (y — Ap(s))
= (v~ Ap(s)" 2(s)" (y — Au(s))

—2Re {py 4e; (y — Ap(s))} + g ql*ct an (76)
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In the case that2, , # 0, we havel — 3, yallc, = —ﬂmq/aq‘,?q, so that
(v~ An(s")" (") (v~ An(s)
= (y— Au(s)) " ®(s) " (y ~ Au(s))

~ B[l (v~ Ants))

o L2
~2Relef (v - An(e) 1) + el 40 &
O—q/Vq Jq,7q

= (y— Ap(s))"®(s) " (y — Ap(s))

Bty — An(s)) + L]

2/
'
2
2
+ Bng | 0(14/(1’ [1 + Uglﬂcfan} (78)
7'
H _
= (v~ Au(s))"®(s) !y~ An(s))
L2 2
~Bolel! (y — Ap(s) + 252 | + gl (79)
94 Tq'q

Together, (76) and (79) yield (80).
(y — Ap(s) " ®(s) "Ly — An(s)))
(y— Ap(s) " ®(s)" (y — Au(s))
- ﬂn,q’|CnH (y — Au(s)) + /~Lq’7q/03’,q|2 03’41 70

+ |Mq’7q|2/02/,q

_ : (80)
(y — An(s))" @ ()" (y — An(s))
—2Re {ug 4e7 (y — Ap(s)) } o5 =0-
+ lug et an
Equation (27) then implies that
Indet(®(s')) = Indet (®(s) + 0} ,ana) (81)
= In [(1+ 02 ,al®(s) " a,) det (®(s))]
= Indet(®(s)) — In(Bng /oy ) (82)
Inp(s’) = Inp(s) +In(Ay/Ag), (83)

which, in conjunction with (18) and (80), yield (31).
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