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Abstract

A low-complexity recursive procedure is presented for model selection and minimum mean squared

error (MMSE) estimation in linear regression. Emphasis is given to the case of a sparse parameter vector

and fewer observations than unknown parameters. A Gaussianmixture is chosen as the prior on the

unknown parameter vector. The algorithm returns both a set of high posterior probability models and

an approximate MMSE estimate of the parameter vector. Exactratios of posterior probabilities serve to

reveal potential ambiguity among multiple candidate solutions that are ambiguous due to observation

noise or correlation among columns in the regressor matrix.Algorithm complexity isO(MNK), with

M observations,N coefficients, andK nonzero coefficients. For the case that hyperparameters areun-

known, an approximate maximum likelihood estimator is proposed based on the generalized expectation-

maximization algorithm. Numerical simulations demonstrate estimation performance and illustrate the

distinctions between MMSE estimation and maximuma posterioriprobability model selection.
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I. I NTRODUCTION

Sparse linear regression is a topic of long-standing interest in signal processing, statistics, and geo-

physics. The linear model is given by

y = Ax + w, (1)

with observation vectory, known regressor matrixA, unknown coefficientsx, and additive noisew. In

sparse problems, the prior belief is that only a small fraction of coefficients are non-negligible.

We adopt a Bayesian approach, which we now review in general terms. Letγk denote a candidate

model, with k indexing the countably many models under consideration. A prior probability p(γk) is

assigned to each model, and a priorp(θk|γk) is adopted for the parameters of each model. For example,

in (1) a modelγk might indicate which entries inx ∈ R
N are nonzero, resulting in2N candidate models.

For linear regression, a model is also known as a variable selection or basis selection. Margining out

parameters and conditioning on the observations yields posterior model probabilities

p(γk|y) =
p(y|γk)p(γk)∑
j p(y|γj)p(γj)

. (2)

Pairwise comparison of candidate models is given by the posterior odds

p(γk|y)

p(γj |y)
=

p(y|γk)

p(y|γj)

p(γk)

p(γj)
. (3)

The model posterior probabilities give a full description ofthe post-data uncertainty and are useful for

inference and decision tasks. A common choice is to compute asingle model that maximizes the posterior

probability—the MAP estimate,̂γ⋆. However, to obtain the minimum mean squared error estimateof x,

one must compute a weighted average of conditional mean estimates over all models with nonzero

probability,

x̂mmse =
∑

k

p(γk|y) E{x|y, γk}. (4)

Bayesian model averaging (e.g., [1], [2] and references therein) is a name sometimes given to this

incorporation of model uncertainty and stands in contrast to model selection, which is the report of a

single model. Thus, the essential element provided by the Bayesian approach is the quantification of

posterior model uncertainty. The posterior odds reveal uncertainty among multiple candidate solutions

that are ambiguous due to observation noise or correlation among columns in the regressor matrix,A.

Bayesian techniques are classical; the novelty here is a suite of computational techniques that make

Bayesian estimation not only tractable, but low complexity, for the sparse linear model, with emphasis

on the case of fewer observations than unknown variables.
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This manuscript is organized as follows. In Section II we brieflysurvey existing approaches to sparse

linear regression. In Section III, we state a flexible signal model and priors for sparse signals; the

priors explicitly specify our modeling assumptions and admit precise interpretation. In Section IV, we

describe our proposed algorithm. A tree-search is combinedwith a low-complexity update of model

posterior probabilities to find a dominant set of likely models. An algorithm for computing approximate

maximum likelihood estimates of the hyperparameters, based on a generalized expectation maximization

(EM) update, is presented in Section V for use when such hyperparameters are not known for a given

application. We numerically investigate in Section VI the algorithm’s performance. In Section VII, we

give specific comparison to related work. Conclusions are summarized in Section VIII.

II. T ECHNIQUES FORSPARSEL INEAR REGRESSION

We present a brief and necessarily incomplete survey of existing approaches to sparse linear regression,

with an emphasis on the themes relevant to our proposed procedure for model uncertainty and parameter

estimation. For convenience, we coarsely partition approaches into those that do or do not explicitly adopt

prior distributions.

A. Algorithms for sparse signal reconstruction

In sparse signal reconstruction, the general aim is to identify the smallest subset of columns of

the regressor matrix,A, whose linear span contains (approximately) the observations, y. Algorithmic

approaches have been proposed for several decades and broadly fall into three categories. The algorithms

return a single model estimate and do not quantify uncertainty in the reported estimate. The algorithms

have typically been developed without recourse to probabilistic priors.

One class of algorithms adopts a greedy search heuristic. Examples include CLEAN [3], projection

pursuit [4], and orthogonal matching pursuit (OMP) [5]. Thereexist sufficient conditions [6], [7] on the

sparseness ofx and singular values of subsets of columns ofA (e.g., the restricted isometry property

[8]) such that a regularized OMP stably recoversx with high probability.

A second class of algorithms recursively solves a sequence of iteratively re-weighted linear least-

squares (IRLS) problems [9]–[11]; recent results [12] for thenoiseless case have established sufficient

conditions such that the sequence converges to the sparsestsolution.

A third class comprises penalized least-squares solutionsfor x and has likewise been used for at least

four decades [13]. In this class of approaches, parameters are found via the optimization

x̂ = argmin
x

‖Ax − y‖2
2 + τ‖x‖p

p, (5)
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or, equivalently, for someǫ > 0

x̂ = argmin
x

‖x‖p s.t. ‖Ax − y‖2
2 < ǫ. (6)

Ridge regression [14] (i.e., Tikhonov regularization) adoptsp = 2, while basis pursuit [15] and LASSO [16]

usep = 1. Equation (5) has been widely adopted, for example in image reconstruction [17], [18], radar

imaging [19], and elsewhere [20], [21]. With proper choice of norm, total variation denoising is also an

algorithm in this class forp = 1 [22], [23].

A link exists to Bayesian estimation; the large class of methods adopting (5) may be interpreted as

implicitly seeking the MAP estimate ofx under the prior

p(x) ∝ exp
{
− τ

2‖x‖
p
p

}
. (7)

Solutions depend on choice of hyperparametersτ and ǫ in (5) and (6), and the choice can be problem-

atic; typically, a cross-validation procedure is adopted,whereby solutions are computed for a range of

hyperparameters.

Elegant recent results by several authors [8], [24], [25] have demonstrated sufficient conditions onA,

w, and the sparsity of the true coefficients,x, such that forp = 1 the convex problem (6) provides the

stable solution (8) for certain positiveC:

min ‖x̂ − x0‖2 < Cǫ. (8)

These proofs have validated the widespread use of (5)-(6), providing a deeper understanding, spurring a

resurgent interest, and promoting the interpretation as “compressive sampling.” The sufficient conditions

on A are the restricted isometry property [8] (RIP) or a bound on the mutual coherence [25], which is

the maximum correlation among the columns inA.

A constructive procedure forA consistent with RIP remains open [26]. But the compressive sampling

hypotheses are met with high probability by draws from classes of random matrices. In this sense,

compressive sampling trades the NP-hardℓ0 sparsest solution task for an intractable experiment design,

then uses randomization for experiment design. In a similarway, randomization has been used in anad

hocmanner for over 40 years in array processing for low side-lobe responses [27], [28]. Thus, compressive

sampling theorems offer an invitation to randomized sampling.

In the sparse reconstruction and compressive sampling literature, primary focus is placed on the

detection of the few significant entries of the sparsex—a task alternatively known as model selection,

variable selection, subset selection, or basis selection.In addition, an estimate of the parametersx is
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also sought. In all these techniques, a single solution is returned without a report of posterior model

uncertainty.

B. Bayesian approaches

Bayesian approaches have been widely reported in a variety of subdisciplines. The relevance vector

machine [29]–[31] explicitly adopts a Bayesian framework with xi independent, zero-mean, Gaussian

with unknown varianceσ2
i . The unknown variances are assigned the inverse Gamma conjugate prior and

an EM iteration computes a MAP estimate ofx. Although priors are adopted, these approaches do not

compute and report posterior probabilities for candidate models; instead, a single model is reported that

approximates the MAP model estimate.

In the statistics literature, rapidly advancing computingtechnology and the advent of Markov chain

Monte Carlo (MCMC) methods for posterior computation combined to yield a large body of Bayesian

methods for model uncertainty. Linear models, as the canonical version of nonparametric regression, have

been widely studied, with attention focused to the over-determined case (more observations than potential

predictors). Approaches differ in specification of the priors and numerical methods for rapidly computing

posterior probabilities for candidate models. For example, Smith and Kohn [32] adopt a log-uniform prior

on the noise variance, an independent Bernoulli prior for selection of nonzero coefficients, and a Zellnerg-

prior1 on the coefficients conditioned on both the noise variance andthe indices of nonzero coefficients.

Then, a Gibbs sampler is used to simulate a pseudorandom sample of models (i.e., configurations of

nonzero coefficients) that converges in distribution to the posterior model probabilities. In the MCMC

methods, this sequence is used to search for high probability models and to obtain posterior weighted

averages for estimation tasks. (See [1], [33] for surveys andreferences, and see [34] for application

of MCMC to an underdetermined Gabor transform problem.) Eladand Yavneh [35] proposed a similar

randomization to identify a sequence of candidate models. Arandomized OMP algorithm is used to create

solutions with sparsity‖x‖0 = K. At each instance of OMP, indices are drawn from among columns

of A most correlated with the residual. The log-probability in the draw is proportional to the decrease

in the residual. A MMSE-inspired denoising (i.e., estimate ofAx) is then generated by averaging, with

uniform weights, the least-squares solutions computed under each model hypothesis. The algorithm is not

1Given the variable selection and noise covariance, the Zellnerg-prior is zero-mean jointly Gaussian with covariance

gσ2(AT
s As)

−1, whereAs is formed by keeping columns fromA corresponding to the nonzero coefficients. The prior is

chosen for computational convenience and is inconsistent for the null model [1].
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derived from a Bayesian formulation; however, the analysisin the manuscript adopts the Zellnerg-prior

and assumes a known number of nonzero coefficients.

Finally, Bayesian model averaging was adopted by Larsson and Selén [36] to approximate minimum

mean squared error (MMSE) estimates. In the sparse over-determined case, a greedy deflation search is

used to identify high-probability models.

In this paper, we adopt a Bayesian model averaging treatmentof model uncertainty and we propose

fast computational techniques to compute posterior model probabilities for the underdetermined, or

undersampled data, case. Further, we arrive at a fast computation technique without adopting the Zellner

g-prior. A method for approximate maximum likelihood estimation of hyperparameters based on a

generalized-EM update is given, for cases when hyperparameters are not known for a specific application.

III. S IGNAL MODEL

This section defines our signal model and priors. We choose to present a general model, withx

drawn from aQ-ary mixture of complex-valued Gaussians with arbitrary means. While this generality

affords application to many practical signals without changing the proposed fast algorithm, it requires a

complexity of notation relative to the simplest special cases of the model. The section concludes with a

description of four specific examples of the general model.

We consider problems where unknown coefficientsx ∈ C
N are observed through the noisy superpo-

sition y ∈ C
M

y = Ax + w, (9)

for known A ∈ C
M×N and for noisew that is white circular Gaussian with varianceσ2, i.e., w ∼

CN (0, σ2IM ), where the columns ofA are taken to be unit-norm. Our focus is on the underdetermined

case (i.e.,N ≫ M ) with a suitably sparse parameter vectorx (i.e., ‖x‖0 ≪ N ). Although we assume

complex-valued quantities, our methods are suitable for real-valued problems with minor modifications.

To model sparsity, we assume that{xn}
N−1
n=0 , the components ofx, are i.i.d. random variables drawn

from a Q-ary Gaussian mixture. For eachxn, a mixture parametersn ∈ {0, . . . , Q− 1} is used to index

the component distribution. In particular, whensn = q, then the coefficientxn is modeled as a circular

Gaussian with meanµq and varianceσ2
q :

xn

∣∣{sn = q} ∼ CN (µq, σ
2
q ). (10)

The mixture parameters{sn}
N−1
i=0 are treated as i.i.d. random variables such thatPr{sn = q} = λq. We

choose(µ0, σ
2
0) = (0, 0), so that the casesn = 0 impliesxn = 0, whereas the casesn > 0 allowsxn 6= 0.
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In addition, we choose{λq}
Q−1
q=0 so that

∑Q−1
q=1 λq ≪ 1, which ensures that (with high probability) the

coefficient vectorx has relatively few nonzero values.

Using x = [x0, . . . , xN−1]
T ands = [s0, . . . , sN−1]

T , the priors can be written as

x|s ∼ CN (µ(s), R(s)), (11)

where[µ(s)]n = µsn
and whereR(s) is diagonal with[R(s)]n,n = σ2

sn
. Equation (9) then implies that

the unknown coefficients,x, and the measurements,y, are jointly Gaussian when conditioned on the

model vector,s. In particular,


y

x




∣∣∣∣∣∣∣
s ∼ CN






Aµ(s)

µ(s)


 ,




Φ(s) AR(s)

R(s)AH R(s)





 , (12)

where

Φ(s) , AR(s)AH + σ2IM . (13)

We now provide examples of how the hyperparametersQ, {λq}
Q−1
q=0 , {µq}

Q−1
q=0 , and{σ2

q}
Q−1
q=0 could be

chosen.

• Zero-mean binary prior: Here,Q = 2, µ1 = 0, andσ2
1 > 0. With this conveniently simple prior,

it can be potentially difficult to distinguish an “active” coefficient from a non-active one, since the

mosta priori probable active-coefficient values are those near zero.

• Nonzero-mean binary prior: Here,Q = 2, µ1 6= 0, andσ2
1 > 0. Compared to the zero-mean binary

prior, active coefficients have a known nonzero mean value2.

• Zero-mean ternary prior: Here,Q = 3, µ1 = −µ2, σ2
1 = σ2

2 > 0, andλ1 = λ2. Appropriate for the

real-valued case with no prior knowledge of sign, this modelfacilitates the discrimination between

active and non-active coefficients whenµ1 andσ2
1 are suitably chosen.

• Q-ary circular prior: Here,Q > 3 and, for allq ∈ {1, . . . , Q}, we setµq = |µ1|e
j2π q−1

Q−1 , σ2
q = σ2

1 >

0, andλq = λ1. This generalization of the zero-mean ternary prior is suitable for complex-valued

coefficients witha priori unknown phase.

2An application of this model arises in electron paramagnetic resonance (EPR) imaging, where an exogenous spin deposit is

constructed from a paramagnetic material [37]. For the EPR application,σ2
1 models variability in the number of spins present

in a polymer-encapsulated microliter deposit.
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IV. M ODEL UNCERTAINTY & ESTIMATING COEFFICIENTS

The observation model (9) is a Gaussian mixture and presents two principal problems: model selection

and parameter estimation. The first task is the selection of oneor more highly probable models from the

QN possible models indexed bys. We refer tos as the “model vector.” In the Bayesian framework, we

also compute posterior probabilities,p(s|y). The second task is the estimation of the coefficients,x. In

this section, we propose a low-complexity method to simultaneously accomplish both of these tasks.

A. Model selection

We index the set of all model vectors byS , {0, 1, . . . , Q− 1}N . The maximuma posteriori (MAP)

model-vector estimate is given bŷs⋆ , argmaxs∈S p(s|y). We seek to determine not only the MAP

model-vector̂s⋆ but also the setS⋆ of all model vectors with non-negligible posterior probability, along

with their posteriors{p(s|y)}s∈S⋆
. By analogy to data communications, findingŝ⋆ is like “hard decoding,”

whereas finding{p(s|y)}s∈S⋆
is like “soft decoding.”

Using Bayes rule, the model-vector posterior becomes

p(s|y) =
p(y|s)p(s)

∑
s′∈S p(y|s′)p(s′)

. (14)

GivenS⋆, the posteriors can be approximated by

p(s|y) ≈
p(y|s)p(s)

∑
s′∈S⋆

p(y|s′)p(s′)
for s ∈ S⋆. (15)

Since, for anys, the values ofp(s|y) andp(y|s)p(s) are equal up to a scaling, the search forS⋆ reduces

to the search for the vectorss ∈ S which yield the dominant values ofp(y|s)p(s). For convenience, we

use the monotonicity of the logarithm to define themodel selection metricν(s, y):

ν(s, y) , ln p(y|s)p(s) (16)

= ln p(y|s) + ln p(s) (17)

= −
(
y − Aµ(s)

)H
Φ(s)−1(y − Aµ(s)

)

− ln det(Φ(s)) − M lnπ +
N−1∑

n=0

lnλsn
. (18)

The assumption of circular complex Gaussian noise was used for (18); for real-valued Gaussian noise,

the first three terms in (18) would simply be halved andlnπ replaced byln 2π.

For Q = 2, detection ofs ∈ {0, 1}N coincides with variable selection. WithQ > 2, there exist

(Q − 1)K possible model vectorss that yield the same selection of a specified subset ofK nonzero

coefficients.
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B. MMSE Coefficient Estimation

For applications in which the identification of the most probable model vector is the primary objective,

the sparse coefficientsx can be regarded as nuisance parameters. In other applications, however, estimation

of x is the primary goal.

The MMSE estimate ofx from y is

x̂mmse , E{x|y} =
∑

s∈S

p(s|y) E{x|y, s} (19)

where from (12) we can obtain (via, e.g., [38, p. 155])

E{x|y, s} = µ(s) + R(s)AH
Φ(s)−1(y − Aµ(s)

)
. (20)

Summing over the dominant modelsS⋆ yields the approximate MMSE estimate

x̂ammse ,
∑

s∈S⋆

p(s|y) E{x|y, s}. (21)

Similarly, the conditional covarianceCov{x|y}, whose trace characterizes the MMSE estimation error,

can be closely approximated as

Cov{x|y} ≈
∑

s∈S⋆

p(s|y)
[
Cov{x|y, s} + (x̂ammse

− E{x|y, s})(x̂ammse − E{x|y, s})H
]

(22)

Cov{x|y, s} = R(s) − R(s)AH
Φ(s)−1AR(s). (23)

In fact, the (approximate) estimation error can be written more directly as

tr
(
Cov{x|y}

)
≈

∑

s∈S⋆

p(s|y)
[
tr

(
Cov{x|y, s}

)

+
∥∥x̂ammse − E{x|y, s}

∥∥2
]
. (24)

The primary challenge in the computation of MMSE estimates is to obtainp(s|y) and Φ(s)−1 for

eachs ∈ S⋆. In the sequel, we propose a fast algorithm to search for the set S⋆ of dominant models

that, in addition, generates the values ofE{x|y, s} andCov{x|y, s} for each explored models.

C. The Search for Dominant Models

We now turn our attention to the search for the dominant models S⋆, i.e., those that yield significant

posteriorsp(s|y). Because the denominator of (14) is impractical to compute and the denominator of (15)

cannot be computed beforeS⋆ is known, we search forS⋆ by looking fors ∈ S for which p(y|s)p(s) =
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p(s, y) is significant according to oura priori assumptions. Due to the relationshipp(s, y) = eν(s,y),

significant values ofp(s, y) correspond to relatively large values ofν(s, y).

To understand what constitutes a “relatively large” value of ν(s, y), we derive thea priori distribution

of the random variableν(s, y) in Appendix A. There we find that

E{ν(s, y)} = 2M + N(1 − λ0)λ0
(
ln

[
(σ2

1

σ2 + 1)λ0

λ1

])2 (25)

for the case thatσ2
q = σ2

1 andλq = λ1 for all q 6= 0, where the expectation is taken over boths andy.

Thus, for a given pair{s′, y}, we can compareν(s′, y) to the meanE{ν(s, y)} and standard deviation
√

var{ν(s, y)} in order to get a rough indication of whether{s′, y} has “significant” probability.

Because brute force evaluation of allQN model vectors is impractical for typical values ofN , we

treat the problem as a non-exhaustive tree search. The models{s : ‖s‖0 = p} form the nodes on thepth

level of the tree, wherep ∈ {0, . . . , N}, so thats = 0 forms the root. We now describe a very general

form of tree search. Say that, after themth stage of tree-search, the search algorithm knows the setŜ(m)

of models currently under consideration, as well as the metrics ν(s, y) for all s ∈ Ŝ(m). At the (m+1)th

stage, the tree-search i) chooses the subsetŜ
(m)
e ⊂ Ŝ(m) of models that will be extended, ii) stores all

single-coefficient modifications of the vectors in̂S(m)
e as the “extended” set̂S(m)

x , iii) computes metrics

for all models inŜ(m)
x , and, based on these metrics, iv) prunes the cumulative set{Ŝ

(m)
x , Ŝ(m)} to form

Ŝ(m+1). A stopping criterion decides when to terminate the search;if stopped at themth stage, the search

would return the “significant” models as the setŜ⋆ = Ŝ(m). We assume that the search is initialized at

the root node, so that̂S(0) = 0 with corresponding metric

ν(0, y) = − 1
σ2 ‖y‖2

2 − M lnσ2 − M lnπ + N lnλ0, (26)

which follows from (18) and the fact thatΦ(0) = σ2IM . The details of the extension procedure, pruning

procedure, and stopping criterion are algorithm specific (e.g., depth-first, breadth-first, best-first). In the

sequel, we will refer to this general approach of non-exhaustive tree-search guided by the Bayesian metric

ν(s, y) asBayesian matching pursuit(BMP). Our experiments with various types of tree search haveled

us to recommend the specific search approach detailed in Section IV-E. We note that existing MCMC

methods [32], for the over-determined caseM ≥ N , can be interpreted as randomized tree searches.

D. Fast Bayesian Matching Pursuit

Common to all BMP variants (and to MCMC methods) is the need toevaluate the metrics{ν(s′, y)}

for all one-parameter modificationss′ of some previously considered model vectors. Here we present a

fast means of doing so, which we callfast Bayesian matching pursuit(FBMP).
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For the case that[s]n = q and [s′]n = q′, wheres and s′ are otherwise identical, we now describe

an efficient method to compute∆n,q′(s, y) , ν(s′, y) − ν(s, y). For brevity, we use the abbreviations

µq′,q , µq′ − µq andσ2
q′,q , σ2

q′ − σ2
q below. Starting with the property

Φ(s′) = Φ(s) + σ2
q′,qanaH

n , (27)

the matrix inversion lemma implies

Φ(s′)−1 = Φ(s)−1 − βn,q′cncH
n (28)

cn , Φ(s)−1an (29)

βn,q′ , σ2
q′,q

(
1 + σ2

q′,qa
H
n cn

)−1
. (30)

In Appendix B it is shown that (27)-(30) imply

∆n,q′(s, y)

=






βn,q′

∣∣cH
n

(
y − Aµ(s)

)
+ µq′,q/σ2

q′,q

∣∣2

− |µq′,q|
2/σ2

q′,q + ln(βn,q′/σ2
q′,q)

+ ln(λq′/λq)

σ2
q′,q 6= 0

2 Re
{
µ∗

q′,qc
H
n

(
y − Aµ(s)

)}

− |µq′,q|
2cH

n an + ln(λq′/λq) σ2
q′,q = 0.

. (31)

Basically,∆n,q′(s, y) quantifies the change toν(s, y) that results from changing thenth index ins from

q to q′.

Notice that the parameters{cn}
N−1
n=0 , which are essential for the metric exploration step (31), require

O(NM2) operations to compute if (29)-(30) were used with standard matrix multiplication. As described

next, the structure ofΦ(s)−1 can be exploited to make this complexityO(NM).

Suppose thats is itself a single-index modification ofspre, for which thenpre-th index of spre was

changed fromqpre to q in order to creates. If the corresponding quantities{cpre
n }N−1

n=0 andβpre
npre,q have

been computed and stored, then, since (28)-(29) imply that

cn =
[
Φ(spre)−1 − βpre

npre,qc
pre
nprec

preH
npre

]
an (32)

= cpre
n − βpre

npre,qc
pre
nprec

preH
npre an, (33)

{cn}
N−1
n=0 can be computed usingO(NM) operations.
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Having computed{cn}
N−1
n=0 , the parameters{βn,q′}q′=0:Q−1

n=0:N−1 can be computed via (30) with a complexity

of O(MN + QN). If we recursively updatez(s) , y − Aµ(s) with O(MQ) multiplies using

z(s) = y − Aµ(spre)︸ ︷︷ ︸
, z(spre)

−anpreµq,qpre , (34)

then {∆n,q′(s)}q′=0:Q−1
n=0:N−1 can be computed via (31) with a complexity ofO(MN + QN). Actually, if

σ2
q = σ2

1 ∀q 6= 0 (as for all the examples given in Section III), thenβn,q′ = βn,1 ∀q′ 6= 0, which leads

to a complexity ofO(MN + QM).

Going further, if we defineC , [c0, . . . , cN−1] and notice thatC = Φ(s)−1A, then we can compute

the s-conditional mean and covariance via

E{x|y, s} = µ(s) + R(s)CHz(s) (35)

Cov{x|y, s} =
(
IN − R(s)CHA

)
R(s), (36)

using (20), (23), and the fact thatΦ(s) is Hermitian. BecauseR(s)CH has only‖s‖0 nonzero rows

andAR(s) has only‖s‖0 nonzero columns, (35) and (36) can be computed using onlyO
(
M‖s‖0

)
and

O
(
M‖s‖2

0

)
multiplies, respectively.

E. Repeated Greedy Search

In Section IV-C, we proposed a general method to search for thedominant modelsS⋆ based on

tree searches that start with the root hypothesiss′ = 0 and modifies one model component at a time,

using the model selection metricν(s′, y) to guide the search. Then, in Section IV-D, we proposed an

efficient metric evaluation method that consumesO((M +Q)N) multiplications to explore all(Q−1)N

single-coefficient modifications at each tree node visited by the search, and an additional complexity of

O(M‖s‖0) andO(M‖s‖2
0) at each nodes for which the conditional mean and covariance, respectively,

are computed. In this section, we propose a particular tree-search that, based on our experience, offers a

good tradeoff between performance and complexity.

Our repeated greedy search(RGS) procedure starts at the root nodes′ = 0 and performs a greedy

inflation search (i.e., activating one model component at a time) until a total ofP model components have

been activated. By “greedy,” we mean that the model component activated at each stage is the one leading

to the largest metricν(s′, y); de-activation is not allowed. We recommend choosingP slightly larger

than the expected number of nonzero coefficientsE{‖s‖0}, e.g., so thatPr(‖s‖0 > P ) is sufficiently
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small.3 Note that the procedure described so far is reminiscent of orthogonal matching pursuit (OMP) [5]

but different in that the Bayesian metricν(s, y) is used to guide the activation of new coefficients. If at

least one of theP evaluated metrics surpasses some predetermined thresholdνthresh, the RGS algorithm

stops. If not, a second greedy inflation search is started (from the root node) and instructed to ignore all

previously explored nodes. If at least one of theP evaluated metrics from this second search surpasses

the thresholdνthresh, the RGS algorithm stops. If not, a new greedy inflation searchis started. The RGS

algorithm continues in this manner untilνthresh is surpassed, or until the number of greedy searches

reaches an allowed maximumDmax. Recall that the thresholdνthresh can be chosen in accordance with

the prior onν(s, y), as discussed in Section IV-C.

The RGS algorithm, using the FBMP recursions from Section IV-D,is detailed in Table I for the

simple case thatσ2
q = σ2

1 and λq = λ1 for all q 6= 0 (which holds true for all the examples given in

Section III).

Denoting the number of greedy searches performed by RGS (fora particular realizationy) by D ≤

Dmax, a total ofDPN(Q−1) models are examined with corresponding metricsν(s′, y). From the table,

it is straightforward to verify that the number of multiplications required to compute all metrics andPD

conditional means isO(DPNM). Computing thePD conditional covariances{Σ̂
(d,p)

}p=1:P
d=1:D requires

an additionalO(DP 3M) multiplies.

F. Exact Odds and Approximate Posteriors

The Bayesian framework provides a report on the confidence of estimates for both the model vectors

and the coefficientsx. In particular, the model selection metricν(s, y) yields the exact posterior odds in

(3). From (14), we can approximate the posterior probabilityof models using the renormalized estimate

p(s|y) =
exp{ν(s, y)}

∑
s′∈S exp{ν(s′, y)}

≈
exp{ν(s, y)}

∑
s′∈S⋆

exp{ν(s′, y)}
,

(37)

where the approximation in (37) incorporates only the models S⋆ ⊂ S that account for the dominant

values ofexp{ν(s, y)}. Likewise, the resultinĝp(x|y):

p̂(x|y) =
∑

s∈S⋆

p̂(s|y)p(x|y, s), (38)

3Recall that‖s‖0 follows the Binomial(N, 1−λ0) distribution. WhenN(1−λ0) > 5, it is reasonable to use the Gaussian

approximation‖s‖0 ∼ N
(
N(1 − λ0), Nλ0(1 − λ0)

)
, in which casePr(‖s‖0 > P ) = 1

2
erfc

(
P−N(1−λ0)√
2Nλ0(1−λ0)

)
.
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νroot = − 1
σ2 ‖y‖2

2 − M ln(σ2π) + N ln λ0;

for n = 0 : N − 1,

croot
n = 1

σ2 an;

βroot
n = σ2

1(1 + σ2
1aH

n croot
n )−1;

for q = 1 : Q − 1,

νroot
n,q = νroot + ln

βroot
n

σ2

1

+ βroot
n

∣∣crootH
n y +

µq

σ2

1

∣∣2 − |µq|
2

σ2

1

+ ln λ1

λ0
;

end

end

for d = 1 : Dmax,

n = [ ];

q = [ ];

ŝ(d,0) = 0;

z = y;

for n = 0 : N − 1,

cn = croot
n ;

βn = βroot
n ;

for q = 1 : Q − 1,

νn,q = νroot
n,q ;

end

end

for p = 1 : P ,

(n⋆, q⋆) = (n, q) indexing the largest element in{νn,q}q=1:Q−1
n=0:N−1

which leads to an as-of-yet unexplored node.

ν(d,p) = νn⋆,q⋆ ;

ŝ(d,p) = ŝ(d,p−1) + q⋆δn⋆ ;

n ← [n, n⋆]
T ;

q ← [q, q⋆]
T ;

z ← z − an⋆µq⋆ ;

for n = 0 : N − 1,

cn ← cn − βn⋆cn⋆cH
n⋆

an;

βn = σ2
1(1 + σ2

1aH
n cn)−1;

for q = 1 : Q − 1,

νn,q = ν(d,p) + ln βn

σ2

1

+ βn

∣∣cH
n z +

µq

σ2

1

∣∣2 − |µq |
2

σ2

1

+ ln λ1

λ0
;

end

end

x̂(d,p) =
∑p

k=1
δ[n]k

[
σ2

1cH
[n]k

z + µ[q]k

]
;

Σ̂
(d,p)

= σ2
1

∑p

k=1

∑p

j=1
δ[n]k

[
δ[n]k−[n]j

− σ2
1cH

[n]k
a[n]j

]
δT

[n]j
;

end

if max{ν(d,p)}p=1:P > νthresh, then break;

end

TABLE I

REPEATEDGREEDY SEARCH VIA FAST BAYESIAN MATCHING PURSUIT
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provides an approximate posterior density that describes the uncertainty in resolvingx from the noisy

observation. The posterior density is a Gaussian mixture andreflects the multi-modal ambiguity inherently

present in the sparse inference problem—an ambiguity especially evident when the signal-to-noise ratio

(SNR) is low or there exists nonnegligible correlation amongthe columns ofA.

V. ESTIMATION OF HYPERPARAMETERS VIAAPPROXIMATE ML

When domain knowledge does not precisely specify the hyperparameters,

θ = {{λq}
Q−1
q=0 , {µq}

Q−1
q=0 , σ2, {σ2

q}
Q−1
q=0 }, (39)

one might opt for maximum likelihood (ML) estimates

θ̂ml = argmax
θ

p(y|θ). (40)

For Q = 2, we now present an approximate ML estimator based on the expectation maximization (EM)

iteration [39], [40]. Sinces ∈ {0, 1}N , we get

x|s, µ1, σ
2
1 ∼ CN

(
µ1s, σ2

1 D(s)
)
, (41)

where we explicitly condition on parametersµ1 and σ2
1 and useD(s) to denote the diagonal matrix

created froms. The received signaly = Ax + w can then be characterized as

y|s, µ1, σ
2
1, σ

2 ∼ CN
(
µ1s, σ2

1AD(s)AH +σ2IM

)
. (42)

Rewriting the conditional pdf using the ratioα , σ2

σ2

1

and the matrixAs whose columns are selected

from A according to the nonzero entries ofs, we get

y|s, µ1, σ
2
1, α ∼ CN

(
µ1As, σ2

1(AsA
H
s + αIM )

)
. (43)

Finally, recall that the log prior fors has the form

ln p(s|λ) =
N−1∑

n=0

ln p(sn|λ) (44)

=
N−1∑

n=0

ln
(
λ + (1 − 2λ)sn

)
, (45)

whereλ , λ0 = Pr{sn = 0}. We estimate the parametersθ , [λ, µ1, α, σ2
1] via the EM algorithm, by

treatings as the so-called “missing data.” In particular, at each M-step, we apply a coordinate ascent

scheme, i.e.,

θ̂
(i+1)
k = argmax

θk

∑

s∈S

p
(
s
∣∣y, θ̂

(i))

× ln p
(
y, s

∣∣θk, {θ̂
(i+1)
m }m<k, {θ̂

(i)
m }m>k

)
. (46)
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Below, we use shorthand notation̂θk for the most recent update of a given parameter, andKs , ‖s‖0.

In practice, the2N term summation in (46) is approximated by a sum over the smallset of dominant

modelsŜ⋆. For the maximization in (46), we will use the fact thatln p(y, s|θ) = ln p(y|s, µ1, σ
2
1, α) +

ln p(s|λ).

Maximization with respect toλ proceeds according to

λ̂(i+1) = argmax
λ

∑

s∈Ŝ⋆

p(s|y, θ̂
(i)

) ln p(s|λ). (47)

Since

∂

∂λ
ln p(s|λ) =

N−1∑

n=0

1 − 2sn

λ + (1 − 2λ)sn
(48)

=
Ks

λ − 1
+

N − Ks

λ
, (49)

zeroing the partial derivative of (47) w.r.t.λ yields

λ̂(i+1) = 1 −
1

N

∑

s∈Ŝ⋆

p(s|y, θ̂
(i)

) Ks. (50)

For the M-step update ofµ1, (46) yields

µ̂
(i+1)
1 = argmax

µ1

∑

s∈Ŝ⋆

p(s|y, θ̂
(i)

) ln p(y|s, µ1, σ
2
1, α), (51)

where, from (43),

ln p(y|s, µ1, σ
2
1, α) = − ln det

[
σ2

1(AsA
H
s + αIM )

]
(52)

− σ−2
1 ‖y − µ1As‖2

(AsAH
s

+αIM )−1 .

Zeroing the partial derivative of the analytic right side of (51) w.r.t. µ1, we find that

µ̂
(i+1)
1 =

∑
s∈Ŝ⋆

p(s|y, θ̂
(i)

)sHAH(AsA
H
s + αIM )−1y

∑
s∈Ŝ⋆

p(s|y, θ̂
(i)

)sHAH(AsA
H
s + αIM )−1As

.

(53)

The update forα is similar in principle, though an approximation is used to simplify the expressions.

Recognizing thatln det
[
σ̂2

1(AsA
H
s + αIM )

]
= ln det

[
AsA

H
s + αIM

]
+ C, whereC does not depend

on α, and noticing that

∂
∂α

ln det
[
AsA

H
s + αIM

]
=

∂
∂α

det
[
AsA

H
s + αIM

]

det
[
AsA

H
s + αIM

] ,

(54)
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we reason that

det
[
AsA

H
s + αIM

]
= αM det

[
α−1AsA

H
s + IM

]
(55)

= αM det
[
α−1AH

s As + IKs

]
(56)

≈ αM−Ks det
[
AH

s As

]
(57)

where in (57) we assume thatα ≪ 1. With this assumption,

∂
∂α

ln det
[
AsA

H
s + αIM

]
=

M − Ks

α
. (58)

We can then use the matrix inversion lemma with the small-α assumption to get

(AsA
H
s + αIM )−1

=
1

α

[
IM − As(αIKs

+ AH
s As)

−1AH
s )

]
(59)

≈
1

α

[
IM − As(A

H
s As)

−1AH
s

]
, (60)

from which zeroing the partial derivative yields

α̂(i+1) = 1
σ2

1

∑
s∈Ŝ⋆

p(s|y, θ̂
(i)

) 1
(M−Ks)

× ‖y − µ̂1As‖2
IM−As(AH

s
As)−1AH

s

. (61)

From the definition ofα, (61) gives the required maximization overσ2 with other parameters fixed.

Finally, maximization w.r.t.σ2
1 is again similar to the procedure forµ1. Using the fact thatln det

[
σ2

1(AsA
H
s +

α̂IM )
]
= M lnσ2

1 + C, whereC does not depend onσ2
1, the corresponding partial-derivative technique

yields

σ̂2
1

(i+1)
=

1

M

∑

s∈Ŝ⋆

p(s|y, θ̂
(i)

)‖y − µ̂1As‖2
(AsAH

s
+α̂IM )−1 .

(62)

For computational simplicity, we are motivated to replace (50), (53), (61) and (62) with simpler

surrogates. Definẽxammse as x̂ammse restricted to the nonzero coefficients, and letmean andvar denote

sample mean and variance. The proposed surrogates, requiring O(M) operations, are

λ̂(i+1) = 1 − (‖x̃ammse‖0/N) (63)

µ̂
(i+1)
1 = mean(x̃ammse) (64)

σ̂2
(i+1)

= var(y − Ax̂ammse) (65)

σ̂2
1

(i+1)
= var(x̃ammse). (66)
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We choose to terminate the iterations as soon as all parameters change by less than 5% of their values

from the previous iteration, or when a maximum number of updates,Emax, is reached.

VI. SIMULATION

Numerical experiments were conducted to investigate the performance of FBMP with approximate

maximum likelihood estimation of hyperparameters from thedata.

For the first experiment, we chose a “compressible”x that mimics the wavelet coefficients of a natural

signal:xk = (−1)k exp(−ρk) for k = 0 . . . N−1 with ρ ∈ (0, 1). With N = 512 andM = 128, we drew

A from i.i.d. zero-mean Gaussian entries which were subsequently scaled to make each column unit-norm.

The noise was also drawn i.i.d. zero-mean Gaussian using a (ρ-dependent) variance that gave15 dB SNR.

The reported results represent an average of2000 independent realizations. We compared FBMP to six

publicly available sparse estimation algorithms: OMP [41], StOMP [42], GPSR-Basic [43], SparseBayes

[29], BCS [31], and a variational-Bayes implementation of BCS [44]. The algorithmic parameters were

chosen in accordance with suggestions provided by the authors and, when applicable, adjusted to yield

improved performance. For SparseBayes, the true inverse noise variance was provided, and it was not re-

estimated during execution as this led to degraded performance. Similarly, OMP and BCS were provided

the true noise variance. StOMP was tested using both the “False Alarm Control” and “False Discovery

Control” thresholding strategies; since the latter appeared less reliable for high values ofρ, we present

results only for the former. Theℓ1-penalty in the GPSR algorithm was chosen asτ = 0.1‖AHy‖∞,

and the MSE kept for comparison purposes was the smaller of theMSEs of the biased and debiased

estimates. The FBMP hyperparameters were initialized atλ1 = 0.01, µ1 = 0, σ2 = 0.05, σ2
1 = 2, and

the surrogate EM updates were used to compute approximate ML estimates of the hyperparameters from

the data.

In Fig. 1 we plot normalized mean squared error (NMSE), defined by

NMSE (dB) = 10 log10

(
1

T

T∑

i=1

‖x̂(i) − x(i)‖2
2

‖x(i)‖2
2

)
, (67)

whereT is the number of random trials and superscript(i) denotes the trial number. From the figure, it

can be seen that the proposed FBMP with EM hyperparameter estimation provides NMSE improvements

of up to 2 dB over OMP and GPSR, and up to6-8 dB over the other algorithms. The improvements are

due, in part, to model averaging for computation ofx̂ammse and the incorporation of noise power when

computing the conditional MMSE estimate (20). The good performance of GPSR can be exhibited to

the choice of signal; the sequencex, while mismatched to the Gaussian mixture prior, is a typical draw
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Fig. 1. Normalized mean squared error versusρ.
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Fig. 2. Runtime versusρ.

from a Laplace density, and is therefore well matched to the MAP estimator (5) forp = 1, to which

GPSR seeks a solution.

Figure 2 displays average runtimes for the same experiment. We note that the runtimes for FBMP

are reported with and without generalized-EM iterations, whereas the runtimes for the other algorithms
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Fig. 3. Solution sparsity versusρ.

do not reflect the repeated executions required to optimize their adjustable parameters. FBMP (without

generalized-EM iterations) is significantly faster than SparseBayes and VB-BCS but significantly slower

than GPSR, OMP, and StOMP. In exchange for speed, FBMP returns notonly a MAP model estimatês⋆,

but also a list of other high-probability modelŝS⋆ along with their posterior probabilities; the other six

approaches considered return only a single model estimate.Thus, FBMP is able to give a more complete

interpretation of the data in the face of ambiguity arising from correlation inA or from measurement

noise.

Fig. 3 shows average sparsity of solutions. We observe that, for this “compressible” signal and Gaussian

regressor matrix, the coefficient estimates returned by FBMP are among the sparsest.

In a second experiment, to illustrate the behavior of the greedy tree-search, we adopt a figure format

used by George and McCulloch [45] to report MCMC results. To allow exhaustive evaluation of all

candidate models, we setN = 26 and M = 7. Signals were constructed using the Gaussian mixture

model of Section III withQ = 2, λ1 = 0.04, µ1 = 0, σ2
1 = 1, and with noise power adjusted to yield

10 dB SNR. For illustration, FBMP was provided the true hyperparameters and used without generalized

EM. Shown in Fig. VI is a rank-ordered list of the posterior probabilities p(s|y). To the right of the

dashed line are the probabilities for the59 modelss selected by the search, while to the left of the dashed

line are the probabilities for models not visited (truncated to show only the top500, out of 226 − 59,
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Fig. 4. Rank ordered posterior probabilities, on a logarithmic scale, of themodelss visited by the search heuristic (right of

dashed vertical line) and the top500 models not visited (left of dashed vertical line).

models). While the figure displays only one realization, it istypical of our numerical experience. The

figure shows that, i) there exist multiple models with high probability, highlighting the inadequacy of

reporting on the MAP model, and, ii) the low-complexity search heuristic is effective in visiting the high

probability models.

In a third experiment, an exhaustive evaluation similar to the previous one was repeated204 times (see

Table II for details), and each time both FBMP and the Larsson-Selén algorithm (LSA) [36] were used

to compute estimates ofx. The resulting average MSE performance is reported in Table II, along with

the average “distance to MMSE” (D2MMSE)‖x̂ − x̂mmse‖
2
2, wherex̂ denotes the estimate returned by

the (FBMP or LSA) algorithm and̂xmmse denotes the exact MMSE estimate. It can be seen that FBMP

clearly outperforms LSA both in terms of MSE and D2MMSE.

In a fourth experiment, we carried out a “multiscale-CS” recovery of the popular “Mondrian” test

image. Under the multiscale-CS framework, random Gaussianensemble measurements were acquired

from the3 finest-scale Haar wavelet coefficients of the128×128 image. In all,4877 measurements were

acquired from the16384 unknowns, with different scales being undersampled by different factors. For

comparison, recoveries were obtained using GPSR as well. The results of this experiment are shown in

Fig. 5, with NMSEs and runtimes reported in the caption. The reported runtimes correspond to the time
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Algorithm MSE [dB] D2MMSE [dB]

FBMP −19.7 −24.1

LSA −8.8 −9.1

TABLE II

PERFORMANCE FORBERNOULLI/IID -GAUSSIAN SIGNAL WITH N = 24, M = 8, Q = 2, λ1 = 0.04, µ1 = 0, σ2
1 = 1, AND

SNR= 15 dB, AVERAGED OVER204 TRIALS. SEE TEXT FOR DEFINITION OFD2MMSE.

(a) Original image
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Fig. 5. Multiscale CS recovery. a) Original128× 128 image; b) FBMP recovery: NMSE= −16.80 dB, 8.85% of coefficients

active,38 minutes runtime; c) GPSR recovery: NMSE= −13.66 dB, 24.02% of coefficients active,2.7 minutes runtime.

taken after the adjustable algorithmic parameters (e.g.,τ for GPSR) were optimized. Relative to GPSR,

the estimate returned by FBMP was more sparse and had lower NMSE,but took longer to generate. We

note that these results are consistent with those from the other experiments.

VII. D ISCUSSION

A. Fast Algorithms: Related Works

A Gaussian mixture model similar to that in Section III was likewise adopted by Larsson and Selén [36],

who, for Q = 2, also constructed the MMSE estimate in the manner of (21) but with anS⋆ that contains

exactly one model vectors for each Hamming weight0 to N . They proposed to find theses via greedy

deflation, i.e., starting with an all-active model configuration and recursively deactivating one component

at a time. Thus, theD = 1 version of the BMP heuristic from Section IV-C recalls the heuristic of [36],

but in reverse. Note, however, that thefast D = 1 BMP presented in Section IV-D has a complexity of

only O(NMP ), in comparison toO(N3M2) for the technique in [36]. Given the typically large values

of N encountered in practice, the complexity of FBMP can be several orders of magnitude lower than
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that of [36]. Complexity aside, Table II suggests that the greedy deflation approach of [36] is much less

effective at finding the models vectors with high posterior probability, leading to estimates that, relative

to FBMP, have higher MSE and are further from the exact MMSE estimate.

For Q = 2, a Gaussian mixture model has been widely adopted for the Bayesian variable selection

problem. (See, e.g., [1] for a survey and references.) The published approaches vary in prior specification,

posterior calculation, and MCMC method (such as Gibbs sampler or Metropolis-Hastings). George and

McCulloch [45] use a conjugate normal prior onx|s, σ2 and a Gibbs sampler that requiresO(N2)

operations to computep(s′|y) from p(s|y), where s′ and s differ in only one element. Smith and

Kohn [32] use the point mass null (i.e.,µ0 = σ2
0 = 0) and the simplifying Zellner-g prior to achieve

a fast update requiringO(K2
s) operations, forKs , ‖s‖0. ApproximatelyMN iterations of the Gibbs

sampler are suggested, yielding a total complexity ofO(MN2K2
s).

B. Bayesian Model Averaging

The Bayesian framework provides a report on the confidence of estimates for both the models and the

coefficientsx. In contrast, confidence labels are absent in most of the compressive sampling literature.

Exceptions are found in [16], [31], which use an (approximate) MAP estimateŝ⋆ for variable selection

and report the Gaussian error covariance for the linear problem conditioned on̂s⋆ being the true model.

As noted by Tibshirani [16], such a measure of posterior uncertainty has dubious value, because “a

difficulty with this formula is that it gives an estimated variance of0 for predictors with”[ŝ⋆]n = 0. In

fact, in our simulations, we observe thatŝ⋆ is often not equal to the trues. Indeed, in order for̂s⋆ to

equal trues with high probability, for fixed sparsity‖s‖0/N , the SNR grows unbounded withN [46].

In this light, we expect certain advantages for algorithms that consider the active signal coefficients as

implicitly uncertain.

As a caveat, we emphasize that our greedy FBMP search returns only Ŝ⋆, an estimate of the dominant

subsetS⋆, along with the values ofν(s, y) for s ∈ Ŝ⋆. Thus, while the valuesν(s, y) returned by FBMP

can be used to compute exact ratios between the posterior probabilities of the model vectors in̂S⋆, the

true posteriors of these configurations (as approximated by (37) with Ŝ⋆ in place ofS⋆) will only be

accurate when̂S⋆ indeed containsS⋆. In simulation, we observe that the proposed greedy FBMP search

reliably discoversS⋆ when λ1N
M

≤ −1/ log(λ1).
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C. Empirical Bayes

Empirical Bayes (EB) approaches have been used in related workto estimate hyperparameters from the

data under signal models similar to the zero-mean binary prior given in Section III. George and Foster [47]

adopted maximum marginal likelihood as in (40) for estimating parameters{λ1, σ
2
1} en route to a MAP

model selection using the Zellnerg-prior. A forward greedy search for the EB̂s⋆ was considered. For

A = I, Johnstone and Silverman [48] used maximum marginal likelihood for λ1 and established the

asymptotic risk of adaptive thresholding rules. Larsson andSeĺen [36] likewise estimated hyperparameters

from the data; forM ≥ N , ad hocestimates were computed from the full-model least-squaresestimate

using higher-order moments.

D. Informative Priors

In our proposed approach, we have sought to incorporate physically meaningful prior knowledge when

application-specific insight is available. Further, by use ofthe generalized-EM algorithm, we have pro-

vided a means for trade-off of complexity versus prior knowledge, i.e., ML estimates of hyperparameters

may be iteratively estimated from the data. In contrast, theaim in statistical literature is to be agnostic

by adopting noninformative priors or hyperpriors.

VIII. C ONCLUSION

In this paper, we proposed an algorithm for joint model selection and sparse coefficient estimation,

which we call fast Bayesian matching pursuit (FBMP). We adopted a Bayesian approach in which a

set of likely model configurations is reported, along with exact ratios of model posterior probabilities.

These relative probabilities serve to reveal potential ambiguity among multiple candidate solutions that

are ambiguous due to observation noise or correlation amongcolumns in the regressor matrix. The

explicit management of uncertainty is essential for applications in which the estimated model vector,ŝ,

and estimated coefficients,x̂, are not final products, but are instead statistics for use in making inference

from the noisy observations,y. The proposed search for high probability models and computation of their

posteriors is fast in that the computational complexity isO(MNK), with M observations,N coefficients,

andK nonzero coefficients. For a modest increase in complexity, the proposed generalized-EM refinement

combines with FBMP to provide an empirical Bayes method for estimating hyperparameters from the data.

Existing approaches using tree searches or MCMC methods require at leastO(MN2K2) computation.

In forthcoming work we will report on a large-scale version of FBMP that reduces the memory required

in recursively computing posterior probabilities, and we will give a bound on the probability that a subset
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of coefficients is absent from the MAP model estimate.
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[3] J. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,”Astrophys. J. Suppl. Ser,

vol. 15, pp. 417–426, 1974.

[4] P. J. Huber, “Projection pursuit,”The Annals of Statistics, vol. 13, pp. 435–475, 1985.

[5] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad., “Orthogonalmatching pursuit: Recursive function approximation with

applications to wavelet decomposition,” inProc. 27th Ann. Asilomar Conf. Signals, Systems, and Computers, 1993.

[6] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,”Harmon. Anal.,

2008. doi:10.1016/j.acha.2008.07.002.

[7] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing: Closing the gap between performance and

complexity,” Mar. 2008. preprint.

[8] E. Cand̀es, J. Romberg, and T. Tao, “Stable signal recovery from incompleteand inaccurate measurements,”Communica-

tions on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.

[9] C. L. Lawson,Contributions to the theory of linear least maximum approximations. PhD thesis, UCLA, 1961.

[10] H. Lee, D. Sullivan, and T. Huang, “Improvement of discrete band-limited signal extrapolation by iterative subspace

modification,” in IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1569 – 1572, 1987.

[11] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstructionfrom limited data using FOCUSS: a re-weighted minimum

norm algorithm,”IEEE Trans. Signal Process., vol. 45, pp. 600 – 616, Mar. 1997.

[12] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for compressive sensing,” inIEEE International Conference

on Acoustics, Speech and Signal Processing, ICASSP 2008, (Las Vegas, NV), pp. 3869 – 3872, April 2008.

[13] H. L. Taylor, S. C. Banks, and J. F. McCoy, “Deconvolution with the ℓ1 norm,” Geophysics, vol. 44, pp. 39–52, 1979.

[14] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthogonal problems,”Technometrics, vol. 12,

pp. 55–67, 1970.

[15] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,”SIAM Journal on Scientific

Computing, vol. 20, no. 1, pp. 33–61, 1998.

[16] R. Tibshirani, “Regression shrinkage and selection via the lasso,”J. R. Statist. Soc. B, vol. 58, no. 1, pp. 267 – 288, 1996.

[17] C. Bouman and K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,”IEEE Trans. Image

Process., vol. 2, pp. 296–310, Mar. 1993.

[18] A. H. Delaney and Y. Bresler, “A fast and accurate Fourier algorithm for iterative parallel-beam tomography,”IEEE Trans.

Image Process., vol. 5, pp. 740–753, May 1996.
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APPENDIX A

MEAN AND VARIANCE OF ν(s, y)

In this appendix, we derive the mean and variance ofν(s, y). According to our priors, ifs is the model

vector from whichy is generated, theny = Ax+w for x|s ∼ CN (µ(s), R(s)) andw ∼ CN (0, σ2IM ).

This implies thaty − Aµ(s)
∣∣ s ∼ CN (0,Φ(s)), so that

(
y − Aµ(s)

)H
Φ(s)−1(y − Aµ(s)

)
∼ χ2

M , (68)

i.e., a chi-squared random variable withM degrees of freedom. Say thatAs denotes the matrix constructed

from the active columns ofA. Then, ifσ2
q = σ2

1 for all q 6= 0 (as in all the examples given in Section III)

and if As is orthonormal,

ln det(Φ(s)) = ln
(
(σ2

1 + σ2)‖s‖0σ2(M−‖s‖0)
)

(69)

= ‖s‖0 ln(σ2

1

σ2 + 1) + M lnσ2, (70)

where ‖s‖0 ∼ Binomial(N, 1 − λ0). The orthonormal assumption onAs is reasonable because the

columns ofA were assumed unit-norm in Section III and, for the class of problems that guarantee good

sparse estimates,any collection of‖s‖0 columns fromA will be approximately orthogonal. (Recall the

restricted isometry property [8].) Finally, if we assume that λq = λ1 for all q 6= 0 (as in all the examples
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given in Section III), then

N−1∑

n=0

lnλsn
= ‖s‖0 lnλ1 + (N − ‖s‖0) lnλ0 (71)

= N lnλ0 − ‖s‖0 ln λ0

λ1

. (72)

Using the facts that the mean and variance of aχ2
M random variable areM and2M , respectively, and

the mean and variance of‖s‖0 areN(1 − λ0) andN(1 − λ0)λ0, respectively, we obtain (25).

APPENDIX B

DERIVATION OF (31)

In this appendix, we establish (31) using (27)-(30). Using the fact thatΦ(s)−1an = cn, we find

(
y − Aµ(s′)

)H
Φ(s′)−1(y − Aµ(s′)

)

=
(
y − Aµ(s) − anµq′,q

)H(
Φ(s)−1 − βn,q′cncH

n

)

×
(
y − Aµ(s) − anµq′,q

)
(73)

=
(
y − Aµ(s)

)H
Φ(s)−1(y − Aµ(s)

)

− βn,q′

∣∣cH
n

(
y − Aµ(s)

)∣∣2

− 2 Re
{
µ∗

q′,qa
H
n Φ(s)−1(y − Aµ(s)

)}

+ 2 Re
{
µ∗

q′,qa
H
n cnβn,q′cH

n

(
y − Aµ(s)

)}

+ |µq′,q|
2aH

n Φ(s)−1an − |µq′,q|
2βn,q′(cH

n an)2 (74)

=
(
y − Aµ(s)

)H
Φ(s)−1(y − Aµ(s)

)

− βn,q′

∣∣cH
n

(
y − Aµ(s)

)∣∣2

− 2 Re
{
µ∗

q′,qc
H
n

(
y − Aµ(s)

)(
1 − βn,q′aH

n cn

)}

+ |µq′,q|
2cH

n an

(
1 − βn,q′aH

n cn

)
. (75)

In the case thatσ2
q′,q = 0, we haveβn,q′ = 0, and so

(
y − Aµ(s′)

)H
Φ(s′)−1(y − Aµ(s′)

)

=
(
y − Aµ(s)

)H
Φ(s)−1(y − Aµ(s)

)

− 2 Re
{
µ∗

q′,qc
H
n

(
y − Aµ(s)

)}
+ |µq′,q|

2cH
n an. (76)
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In the case thatσ2
q′,q 6= 0, we have1 − βn,q′aH

n cn = −βn,q′σ−2
q′,q, so that

(
y − Aµ(s′)

)H
Φ(s′)−1(y − Aµ(s′)

)

=
(
y − Aµ(s)

)H
Φ(s)−1(y − Aµ(s)

)

− βn,q′

[∣∣cH
n

(
y − Aµ(s)

)∣∣2

− 2 Re
{
cH

n

(
y − Aµ(s)

)µ∗
q′,q

σ2
q′,q

}
+ cH

n an
|µq′,q|

2

σ2
q′,q

]
(77)

=
(
y − Aµ(s)

)H
Φ(s)−1(y − Aµ(s)

)

− βn,q′

∣∣∣cH
n

(
y − Aµ(s)

)
+

µq′,q

σ2
q′,q

∣∣∣
2

+ βn,q′

|µq′,q|
2

σ4
q′,q

[
1 + σ2

q′,qc
H
n an

]
(78)

=
(
y − Aµ(s)

)H
Φ(s)−1(y − Aµ(s)

)

− βn,q′

∣∣∣cH
n

(
y − Aµ(s)

)
+

µq′,q

σ2
q′,q

∣∣∣
2
+

|µq′,q|
2

σ2
q′,q

. (79)

Together, (76) and (79) yield (80).

(
y − Aµ(s′)

)H
Φ(s′)−1(y − Aµ(s′)

)

=






(
y − Aµ(s)

)H
Φ(s)−1

(
y − Aµ(s)

)

− βn,q′

∣∣cH
n

(
y − Aµ(s)

)
+ µq′,q/σ2

q′,q

∣∣2

+ |µq′,q|
2/σ2

q′,q

σ2
q′,q 6= 0

(
y − Aµ(s)

)H
Φ(s)−1

(
y − Aµ(s)

)

− 2 Re
{
µ∗

q′,qc
H
n

(
y − Aµ(s)

)}

+ |µq′,q|
2cH

n an

σ2
q′,q = 0.

. (80)

Equation (27) then implies that

ln det(Φ(s′)) = ln det
(
Φ(s) + σ2

q′,qanaH
n

)
(81)

= ln
[(

1 + σ2
q′,qa

H
n Φ(s)−1an

)
det

(
Φ(s)

)]

= ln det(Φ(s)) − ln(βn,q′/σ2
q′,q) (82)

ln p(s′) = ln p(s) + ln(λq′/λq), (83)

which, in conjunction with (18) and (80), yield (31).
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